Solveeit Logo

Question

Mathematics Question on Relations and functions

Let A=0,1,2A = \\{ 0,1,2 \\}, B=4,2,0B =\\{ 4,2,0 \\} and f,gf,g : ABA \rightarrow B be the functions defined by f(x)=x2xf(x) = x^2-x and g(x)=2x121g(x) = 2|x-\frac{1}{2}|-1 Then,

A

f=gf = g

B

f=2gf = 2g

C

g=2fg = 2f

D

None of these

Answer

f=gf = g

Explanation

Solution

We have A=\left\\{1, 0, 1, 2\right\\}
B=\left\\{4, 2, 0, 2\right\\}
and f,g:ABf, g : A \rightarrow B
Now, f(x)=x2xf \left(x\right)=x^{2}-x
f(0)=00=0\Rightarrow f \left(0\right)=0-0=0
and f(1)=11=0(i)f \left(1\right)=1-1=0\ldots\left(i\right)
and f(2)=222=2f \left(2\right)=2^{2}-2=2
Also, g(x)=2x121g\left(x\right)=2\left|x-\frac{1}{2}\right|-1
g(0)=2121=11=0\Rightarrow g \left(0\right)=2\left|\frac{-1}{2}\right|-1=1-1=0
and g(1)=21121 g\left(1\right)=2\left|1-\frac{1}{2}\right|-1
=1=0(ii)=1-=0 \ldots\left(ii\right)
and g(2)=22121g \left(2\right)=2\left|2-\frac{1}{2}\right|-1
=2.321=2=\frac{2.3}{2}-1=2
Hence from Eqs. (i)\left(i\right) and (ii)\left(ii\right), we can say that
f(x)=g(x)f\left(x\right)=g\left(x\right)
f=g\Rightarrow f=g