Solveeit Logo

Question

Mathematics Question on Hyperbola

Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola
x2a2y2b2=1\frac{x^2}{a^2}−\frac{y^2}{b^2}=1
Let e′ and l′ respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If
e2=1114le^2=\frac{11}{14}l and (e)2=118l(e^′)^2=\frac{11}{8}l^′
then the value of 77a + 44b is equal to :

A

100

B

110

C

120

D

130

Answer

130

Explanation

Solution

The correct answer is (D) : 130
H:x2a2y2b2=1H : \frac{x^2}{a^2}−\frac{y^2}{b^2}=1
then
e2=1114le^2=\frac{11}{14}l
(I be the length of LR)
a2+b2=117b2a(i)⇒a^2+b^2=\frac{11}{7}b^2a…(i)
and
e2=118le^{′^2}=\frac{11}{8}l^′
(I′ be the length of LR of conjugate hyperbola)
a2+b2=114a2b(ii)⇒a^2+b^2=\frac{11}{4}a^2b…(ii)
By (i) and (ii)
7a = 4b
then by (i)
1649b2+b2=117b24b7\frac{16}{49}b^2+b^2=\frac{11}{7}b^2⋅\frac{4b}{7}
⇒ 44b = 65 and 77a = 65
Therefore , 77a + 44b = 130