Solveeit Logo

Question

Question: Let $a > 0$ and $$f: (-\infty, -(a+1)) \cup (-a, +\infty) \rightarrow \mathbb{R},$$ $$f(x) = \frac{1...

Let a>0a > 0 and f:(,(a+1))(a,+)R,f: (-\infty, -(a+1)) \cup (-a, +\infty) \rightarrow \mathbb{R}, f(x)=1x2+(2a+1)x+a2+af(x) = \frac{1}{x^2 + (2a+1)x + a^2 + a} Determine the value of limnlimpk=1pfn(k)n2\lim_{n \to \infty} \sqrt[n^2]{\left| \lim_{p \to \infty} \sum_{k=1}^{p} f^n(k) \right|} where fn(x)f^n(x) denotes the nthn^{th} derivative of ff.

Answer

1

Explanation

Solution

The function f(x)f(x) can be simplified by factoring the denominator: x2+(2a+1)x+a2+a=(x+a)(x+a+1)x^2 + (2a+1)x + a^2 + a = (x+a)(x+a+1) So, f(x)=1(x+a)(x+a+1)f(x) = \frac{1}{(x+a)(x+a+1)} Using partial fraction decomposition, we get: f(x)=1x+a1x+a+1f(x) = \frac{1}{x+a} - \frac{1}{x+a+1} The nthn^{th} derivative of f(x)f(x) is: f(n)(x)=dndxn(1x+a)dndxn(1x+a+1)f^{(n)}(x) = \frac{d^n}{dx^n}\left(\frac{1}{x+a}\right) - \frac{d^n}{dx^n}\left(\frac{1}{x+a+1}\right) The nthn^{th} derivative of (x+c)1(x+c)^{-1} is (1)nn!(x+c)n+1\frac{(-1)^n n!}{(x+c)^{n+1}}. Thus, f(n)(x)=(1)nn!(1(x+a)n+11(x+a+1)n+1)f^{(n)}(x) = (-1)^n n! \left( \frac{1}{(x+a)^{n+1}} - \frac{1}{(x+a+1)^{n+1}} \right) Now, consider the inner limit: limpk=1pfn(k)=limpk=1p(1)nn!(1(k+a)n+11(k+a+1)n+1)\lim_{p \to \infty} \sum_{k=1}^{p} f^n(k) = \lim_{p \to \infty} \sum_{k=1}^{p} (-1)^n n! \left( \frac{1}{(k+a)^{n+1}} - \frac{1}{(k+a+1)^{n+1}} \right) This is a telescoping sum: =(1)nn!limp[(1(1+a)n+11(2+a)n+1)+(1(2+a)n+11(3+a)n+1)++(1(p+a)n+11(p+1+a)n+1)]= (-1)^n n! \lim_{p \to \infty} \left[ \left(\frac{1}{(1+a)^{n+1}} - \frac{1}{(2+a)^{n+1}}\right) + \left(\frac{1}{(2+a)^{n+1}} - \frac{1}{(3+a)^{n+1}}\right) + \dots + \left(\frac{1}{(p+a)^{n+1}} - \frac{1}{(p+1+a)^{n+1}}\right) \right] =(1)nn!limp(1(1+a)n+11(p+1+a)n+1)= (-1)^n n! \lim_{p \to \infty} \left( \frac{1}{(1+a)^{n+1}} - \frac{1}{(p+1+a)^{n+1}} \right) As pp \to \infty, 1(p+1+a)n+10\frac{1}{(p+1+a)^{n+1}} \to 0. So, the limit of the sum is: (1)nn!1(1+a)n+1(-1)^n n! \frac{1}{(1+a)^{n+1}} Now, we take the absolute value: (1)nn!1(1+a)n+1=n!(1+a)n+1\left| (-1)^n n! \frac{1}{(1+a)^{n+1}} \right| = \frac{n!}{(1+a)^{n+1}} Finally, we evaluate the outer limit: L=limnn!(1+a)n+1n2=limn(n!(1+a)n+1)1n2L = \lim_{n \to \infty} \sqrt[n^2]{\frac{n!}{(1+a)^{n+1}}} = \lim_{n \to \infty} \left( \frac{n!}{(1+a)^{n+1}} \right)^{\frac{1}{n^2}} To evaluate this, we consider the logarithm: lnL=limn1n2ln(n!(1+a)n+1)=limnln(n!)(n+1)ln(1+a)n2\ln L = \lim_{n \to \infty} \frac{1}{n^2} \ln \left( \frac{n!}{(1+a)^{n+1}} \right) = \lim_{n \to \infty} \frac{\ln(n!) - (n+1)\ln(1+a)}{n^2} We use the fact that ln(n!)nlnnn\ln(n!) \approx n \ln n - n (Stirling's approximation). lnL=limnnlnnn(n+1)ln(1+a)n2\ln L = \lim_{n \to \infty} \frac{n \ln n - n - (n+1)\ln(1+a)}{n^2} lnL=limn(nlnnn2nn2(n+1)ln(1+a)n2)\ln L = \lim_{n \to \infty} \left( \frac{n \ln n}{n^2} - \frac{n}{n^2} - \frac{(n+1)\ln(1+a)}{n^2} \right) lnL=limn(lnnn1n(n+1)ln(1+a)n2)\ln L = \lim_{n \to \infty} \left( \frac{\ln n}{n} - \frac{1}{n} - \frac{(n+1)\ln(1+a)}{n^2} \right) As nn \to \infty: limnlnnn=0\lim_{n \to \infty} \frac{\ln n}{n} = 0 (by L'Hopital's rule). limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0. limn(n+1)ln(1+a)n2=ln(1+a)limnn+1n2=ln(1+a)0=0\lim_{n \to \infty} \frac{(n+1)\ln(1+a)}{n^2} = \ln(1+a) \lim_{n \to \infty} \frac{n+1}{n^2} = \ln(1+a) \cdot 0 = 0. Therefore, lnL=000=0\ln L = 0 - 0 - 0 = 0. Since lnL=0\ln L = 0, we have L=e0=1L = e^0 = 1.