Solveeit Logo

Question

Mathematics Question on Differential equations

Let 9=9 = x1<x2<<x7x_1​<x_2​<…<x_7​ be in an A.P. with common difference d. If the standard deviation of x1,x2,x7x_1​,x_2​ …,x_7​ is 4 and the mean is xˉ\bar x, then xˉ+x6\bar x+x_6​ is equal to :

A

18(1+13)18\left(1+\frac{1}{\sqrt{3}}\right)

B

2(9+87)2\left(9+\frac{8}{\sqrt{7}}\right)

C

34

D

25

Answer

34

Explanation

Solution

The correct answer is (C) : 3434
9=x1<x2<<x79=x_1​<x_2​<……<x_7​
9,9+d,9+2d,.9+6d9,9+d,9+2d,…….9+6d
0,d,2d,.6d0,d,2d,…….6d
xnew=21d7=3dx_{new} ​=\frac {21d​}{7}=3d

16=17(02+12+.+62)d29d216=\frac 17​(0^2+1^2+…….+6^2)d^2−9d^2

16=17(6×7×136)d29d216=\frac 17​(\frac {6×7×13}{6}​)d^2−9d^2
16=13d29d216 = 13d^2 - 9d^2
16=4d216=4d^2
d2=4d^2=4
d=2d=2
Now,
xˉ+x6=6+9+10+9\bar x+x_6​=6+9+10+9
xˉ+x6=34\bar x+x_6= 34