Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let(5,a4)(5,\frac{a}{4}),be the circumcenter of a triangle with vertices A (a, -2),B (a, 6)and C (a4,2)(\frac{a}{4},-2).Let α\alpha denote the circumradius, β\beta denote the area and γ\gamma denote the perimeter of the triangle. Then α+β+γ\alpha+\beta+\gamma is

A

60

B

53

C

62

D

30

Answer

53

Explanation

Solution

Given points are A(1,2)A(1, -2), B(a,6)B(a, 6), and C(32,2)C\left(\frac{3}{2}, -2\right).
- The circumcenter OO is (53,4)\left(\frac{5}{3}, 4\right).

Calculate AOAO and BOBO (Using Distance Formula): - AO=BOAO = BO:

(a5)2+(a4+2)2=(a5)2+(a46)2(a - 5)^2 + \left(\frac{a}{4} + 2\right)^2 = (a - 5)^2 + \left(\frac{a}{4} - 6\right)^2
Solving this gives a=8a = 8.

Determine Side Lengths of the Triangle: - With a=8a = 8: AB=8AB = 8, AC=6AC = 6, BC=10BC = 10.

Calculate Circumradius (α\alpha), Area (β\beta), and Perimeter (γ\gamma): - Circumradius α=5\alpha = 5, Area β=24\beta = 24, Perimeter γ=24\gamma = 24

Compute α+β+γ\alpha + \beta + \gamma:

α+β+γ=5+24+24=53\alpha + \beta + \gamma = 5 + 24 + 24 = 53

So, the correct option is: 53\mathbf{53}