Solveeit Logo

Question

Question: Let \(f(x)=x^4+ax^3+bx^2+cx+d\) be a polynomial with real coefficients such that \(f(1)=-9\). Suppos...

Let f(x)=x4+ax3+bx2+cx+df(x)=x^4+ax^3+bx^2+cx+d be a polynomial with real coefficients such that f(1)=9f(1)=-9. Suppose that i3i\sqrt{3} is a root of the equation x3+2x2+4x+3=0x^3+2x^2+4x+3=0, where i2=1i^2=-1. If α1,α2,α3,α4\alpha_1,\alpha_2,\alpha_3,\alpha_4 are all the roots of the equation f(x)=0f(x)=0, then α12+α22+α32+α42\alpha_1^2+\alpha_2^2+\alpha_3^2+\alpha_4^2 is equal to ______.

Answer

161/100

Explanation

Solution

Step 1: Find the roots of the cubic
The given cubic is

x3+2x2+4x+3=0.x^3 + 2x^2 + 4x + 3 = 0.

Since i3i\sqrt{3} is a root and coefficients are real, the conjugate i3-\,i\sqrt{3} is also a root. Let the third real root be rr.
By Viète’s formula, the sum of roots is

(i3)+(i3)+r=2r=2.(i\sqrt{3}) + (-\,i\sqrt{3}) + r = -2 \quad\Longrightarrow\quad r = -2.

So the roots are i3,i3,2i\sqrt{3},\,-i\sqrt{3},\,-2.

Step 2: Construct f(x)f(x)
Since these three are roots of f(x)f(x), write

f(x)=(x3+2x2+4x+3)(xk),f(x) = (x^3 + 2x^2 + 4x + 3)\,(x - k),

for some real kk. Expanding:

f(x)=x4+(2k)x3+(42k)x2+(34k)x3k.f(x) = x^4 + (2 - k)x^3 + (4 - 2k)x^2 + (3 - 4k)x - 3k.

Now use f(1)=9f(1)=-9:

f(1)=1+(2k)+(42k)+(34k)3k=1010k=91010k=9k=1910.f(1)=1+(2-k)+(4-2k)+(3-4k)-3k = 10 - 10k = -9 \quad\Longrightarrow\quad 10 - 10k = -9 \quad\Longrightarrow\quad k = \tfrac{19}{10}.

Step 3: Identify all four roots
Thus the four roots of f(x)f(x) are

α1=i3,α2=i3,α3=2,α4=1910.\alpha_1 = i\sqrt{3},\quad \alpha_2 = -\,i\sqrt{3},\quad \alpha_3 = -2,\quad \alpha_4 = \tfrac{19}{10}.

Step 4: Compute the desired sum

j=14αj2=(i3)2+(i3)2+(2)2+(1910)2=(3)+(3)+4+361100=2+361100=161100.\sum_{j=1}^4 \alpha_j^2 = (i\sqrt{3})^2 + (-\,i\sqrt{3})^2 + (-2)^2 + \bigl(\tfrac{19}{10}\bigr)^2 = (-3) + (-3) + 4 + \tfrac{361}{100} = -2 + \tfrac{361}{100} = \tfrac{161}{100}.