Solveeit Logo

Question

Question: Let α = \(2f(x)3f(x)\) & β=\(f(x) = \cos\lbrack\pi^{2}\rbrack x + \cos\lbrack - \pi^{2}\rbrack x,f\...

Let α = 2f(x)3f(x)2f(x)3f(x) &

β=f(x)=cos[π2]x+cos[π2]x,f(π4)=2f(x) = \cos\lbrack\pi^{2}\rbrack x + \cos\lbrack - \pi^{2}\rbrack x,f\left( \frac{\pi}{4} \right) = 2then-

A

α = β

B

α<β

C

4α – 3β = 0

D

3α – 4β = 0

Answer

3α – 4β = 0

Explanation

Solution

α = = 13\frac { 1 } { 3 }

β = 12+22+..+n2n4\frac { 1 ^ { 2 } + 2 ^ { 2 } + \ldots . . + \mathrm { n } ^ { 2 } } { \mathrm { n } ^ { 4 } }

= 14\frac { 1 } { 4 } – 0 = 14\frac { 1 } { 4 }

∴ 3α – 4β = 3 × 13\frac { 1 } { 3 } – 4 × 14\frac { 1 } { 4 }= 1 – 1 = 0