Solveeit Logo

Question

Question: Let ƒ : [2, 7] ® [0, ) be a continuous and differentiable function. Then (ƒ (7) – ƒ (2)) \(\frac{(...

Let ƒ : [2, 7] ® [0, ) be a continuous and differentiable function. Then

(ƒ (7) – ƒ (2)) (ƒ(7))2+(ƒ(2))2+ƒ(2)ƒ(7)3\frac{(ƒ(7))^{2} + (ƒ(2))^{2} + ƒ(2)ƒ(7)}{3} where c Ī [2, 7]

(1) 5 ƒ 2 c ƒ¢ (3) (2) 5ƒ¢ (3) (3) ƒ(3) ƒ¢(3) (4) None

A

5 ƒ 2 c ƒ¢ (3)

B

5 Ģ (3)

C

ƒ(3) ƒ¢(3)

D

None

Answer

5 ƒ 2 c ƒ¢ (3)

Explanation

Solution

Let g(x) = ƒ3(x)

Ž g¢(x) = 3ƒ2(x) . ƒ¢ (x)

Q ƒ : [2, 7] ® [0, ) Ž g : [2, 7] ® [0, )

Using Lagrage’s Mean Value theorem on g(x) we get

g¢(3) = g(7)g(2)5\frac{g(7)–g(2)}{5} ; c Ī [2, 7]

Ž 5 ƒ2(3) ƒ¢(3) = (ƒ(7) – ƒ(2))

[(ƒ(7))2+(ƒ(2))2+ƒ(2)ƒ(7)]3\frac{\lbrack(ƒ(7))^{2} + (ƒ(2))^{2} + ƒ(2)ƒ(7)\rbrack}{3}.

Hence (1) is the correct answer.