Question
Question: Let : [2, 7] ® [0, ) be a continuous and differentiable function. Then ( (7) – (2)) \(\frac{(...
Let : [2, 7] ® [0, ) be a continuous and differentiable function. Then
( (7) – (2)) 3(ƒ(7))2+(ƒ(2))2+ƒ(2)ƒ(7) where c Ī [2, 7]
(1) 5 2 c ¢ (3) (2) 5¢ (3) (3) (3) ¢(3) (4) None
A
5 2 c ¢ (3)
B
5 ¢ (3)
C
(3) ¢(3)
D
None
Answer
5 2 c ¢ (3)
Explanation
Solution
Let g(x) = 3(x)
Ž g¢(x) = 32(x) . ¢ (x)
Q : [2, 7] ® [0, ) Ž g : [2, 7] ® [0, )
Using Lagrage’s Mean Value theorem on g(x) we get
g¢(3) = 5g(7)–g(2) ; c Ī [2, 7]
Ž 5 2(3) ¢(3) = ((7) – (2))
3[(ƒ(7))2+(ƒ(2))2+ƒ(2)ƒ(7)].
Hence (1) is the correct answer.