Solveeit Logo

Question

Question: Let \((2 - 3i)\) be two complex numbers such that \(4 + i\) and \(x = \frac{5}{13},y = \frac{8}{13}\...

Let (23i)(2 - 3i) be two complex numbers such that 4+i4 + i and x=513,y=813x = \frac{5}{13},y = \frac{8}{13} both are real, then.

A

x=813,y=513x = \frac{8}{13},y = \frac{5}{13}

B

x=513,y=1413x = \frac{5}{13},y = \frac{14}{13}

C

xx

D

yy

Answer

x=513,y=1413x = \frac{5}{13},y = \frac{14}{13}

Explanation

Solution

Let z26z+25=0z^{2} - 6z + 25 = 0, then

z43z3+3z2+99z95z^{4} - 3z^{3} + 3z^{2} + 99z - 95 is real ⇒ =(z2+3z4)(z26z+25)+5= (z^{2} + 3z - 4)(z^{2} - 6z + 25) + 5is real

=(z2+3z4)(0)+5=5= (z^{2} + 3z - 4)(0) + 5 = 5z1=1iz_{1} = 1 - i .....(i)

z2=2+4iz_{2} = - 2 + 4i is real

z1z2z1=(1i)(2+4i)1i=2+4i\frac{z_{1}z_{2}}{z_{1}} = \frac{(1 - i)( - 2 + 4i)}{1 - i} = - 2 + 4iis real

Im(z1z2z1)=4{Im}\left( \frac{z_{1}z_{2}}{z_{1}} \right) = 43x+2iy5i2=158x+3iy\frac{3x + 2iy}{5i - 2} = \frac{15}{8x + 3iy}24x2+9ixy6y2+16ixy=75i3024x^{2} + 9ixy - 6y^{2} + 16ixy = 75i - 30

24x26y2+25ixy=75i3024x^{2} - 6y^{2} + 25ixy = 75i - 30 24x26y2=3024x^{2} - 6y^{2} = - 30and 4x2y2=54x^{2} - y^{2} = - 5