Solveeit Logo

Question

Question: Let $(1 + x + x^2)^{20} = \sum_{k=0}^{40} a_k x^k$. If $\alpha a_{11} = \beta a_{10} + \gamma a_9$, ...

Let (1+x+x2)20=k=040akxk(1 + x + x^2)^{20} = \sum_{k=0}^{40} a_k x^k. If αa11=βa10+γa9\alpha a_{11} = \beta a_{10} + \gamma a_9, where α,β,γN\alpha, \beta, \gamma \in N, then the value of γαβ\frac{\gamma - \alpha}{\beta} is

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

To find the relation between the coefficients a11,a10,a9a_{11}, a_{10}, a_9 of the expansion (1+x+x2)20=k=040akxk(1 + x + x^2)^{20} = \sum_{k=0}^{40} a_k x^k, we use a technique involving differentiation.

Let P(x)=(1+x+x2)20P(x) = (1 + x + x^2)^{20}.
We can write P(x)=k=040akxkP(x) = \sum_{k=0}^{40} a_k x^k.

Differentiate P(x)P(x) with respect to xx:
P(x)=20(1+x+x2)19(1+2x)P'(x) = 20(1 + x + x^2)^{19}(1 + 2x).

Now, multiply P(x)P'(x) by (1+x+x2)(1 + x + x^2):
P(x)(1+x+x2)=20(1+x+x2)19(1+2x)(1+x+x2)P'(x)(1 + x + x^2) = 20(1 + x + x^2)^{19}(1 + 2x)(1 + x + x^2)
P(x)(1+x+x2)=20(1+2x)(1+x+x2)20P'(x)(1 + x + x^2) = 20(1 + 2x)(1 + x + x^2)^{20}
Substitute P(x)P(x) back into the equation:
P(x)(1+x+x2)=20(1+2x)P(x)P'(x)(1 + x + x^2) = 20(1 + 2x)P(x).

Now, substitute the series forms of P(x)P(x) and P(x)P'(x) into this equation:
Since P(x)=k=040akxkP(x) = \sum_{k=0}^{40} a_k x^k, then P(x)=k=140kakxk1P'(x) = \sum_{k=1}^{40} k a_k x^{k-1}.

The left-hand side (LHS) becomes:
(k=140kakxk1)(1+x+x2)=k=140kakxk1+k=140kakxk+k=140kakxk+1(\sum_{k=1}^{40} k a_k x^{k-1})(1 + x + x^2) = \sum_{k=1}^{40} k a_k x^{k-1} + \sum_{k=1}^{40} k a_k x^k + \sum_{k=1}^{40} k a_k x^{k+1}.

The right-hand side (RHS) becomes:
20(1+2x)(k=040akxk)=20k=040akxk+40k=040akxk+120(1 + 2x)(\sum_{k=0}^{40} a_k x^k) = 20 \sum_{k=0}^{40} a_k x^k + 40 \sum_{k=0}^{40} a_k x^{k+1}.

Now, we equate the coefficients of x10x^{10} on both sides.

Coefficient of x10x^{10} on LHS:
From k=140kakxk1\sum_{k=1}^{40} k a_k x^{k-1}: set k1=10k=11k-1=10 \Rightarrow k=11. The term is 11a11x1011 a_{11} x^{10}.
From k=140kakxk\sum_{k=1}^{40} k a_k x^k: set k=10k=10. The term is 10a10x1010 a_{10} x^{10}.
From k=140kakxk+1\sum_{k=1}^{40} k a_k x^{k+1}: set k+1=10k=9k+1=10 \Rightarrow k=9. The term is 9a9x109 a_9 x^{10}.
So, the coefficient of x10x^{10} on LHS is 11a11+10a10+9a911 a_{11} + 10 a_{10} + 9 a_9.

Coefficient of x10x^{10} on RHS:
From 20k=040akxk20 \sum_{k=0}^{40} a_k x^k: set k=10k=10. The term is 20a10x1020 a_{10} x^{10}.
From 40k=040akxk+140 \sum_{k=0}^{40} a_k x^{k+1}: set k+1=10k=9k+1=10 \Rightarrow k=9. The term is 40a9x1040 a_9 x^{10}.
So, the coefficient of x10x^{10} on RHS is 20a10+40a920 a_{10} + 40 a_9.

Equating the coefficients of x10x^{10}:
11a11+10a10+9a9=20a10+40a911 a_{11} + 10 a_{10} + 9 a_9 = 20 a_{10} + 40 a_9.

Rearrange the terms to match the given form αa11=βa10+γa9\alpha a_{11} = \beta a_{10} + \gamma a_9:
11a11=(2010)a10+(409)a911 a_{11} = (20 - 10)a_{10} + (40 - 9)a_9
11a11=10a10+31a911 a_{11} = 10 a_{10} + 31 a_9.

Comparing this with αa11=βa10+γa9\alpha a_{11} = \beta a_{10} + \gamma a_9, we identify the values:
α=11\alpha = 11
β=10\beta = 10
γ=31\gamma = 31

Given that α,β,γN\alpha, \beta, \gamma \in N, these values satisfy the condition.

Finally, we need to find the value of γαβ\frac{\gamma - \alpha}{\beta}:
γαβ=311110=2010=2\frac{\gamma - \alpha}{\beta} = \frac{31 - 11}{10} = \frac{20}{10} = 2.

The final answer is 2\boxed{2}.

Explanation of the solution:
The problem involves finding a recurrence relation between coefficients of a polynomial expansion.

  1. Define P(x)=(1+x+x2)20=k=040akxkP(x) = (1 + x + x^2)^{20} = \sum_{k=0}^{40} a_k x^k.
  2. Differentiate P(x)P(x) to get P(x)=20(1+x+x2)19(1+2x)P'(x) = 20(1 + x + x^2)^{19}(1 + 2x).
  3. Establish a relationship between P(x)P(x) and P(x)P'(x) by multiplying P(x)P'(x) by (1+x+x2)(1+x+x^2):
    P(x)(1+x+x2)=20(1+2x)P(x)P'(x)(1+x+x^2) = 20(1+2x)P(x).
  4. Substitute the series forms of P(x)P(x) and P(x)P'(x) into this equation:
    (k=140kakxk1)(1+x+x2)=20(1+2x)(k=040akxk)(\sum_{k=1}^{40} k a_k x^{k-1})(1+x+x^2) = 20(1+2x)(\sum_{k=0}^{40} a_k x^k).
  5. Equate the coefficients of x10x^{10} on both sides of the equation.
    LHS coefficient of x10x^{10}: 11a11+10a10+9a911 a_{11} + 10 a_{10} + 9 a_9.
    RHS coefficient of x10x^{10}: 20a10+40a920 a_{10} + 40 a_9.
  6. Set LHS coefficient equal to RHS coefficient: 11a11+10a10+9a9=20a10+40a911 a_{11} + 10 a_{10} + 9 a_9 = 20 a_{10} + 40 a_9.
  7. Rearrange the equation to match the given form αa11=βa10+γa9\alpha a_{11} = \beta a_{10} + \gamma a_9:
    11a11=10a10+31a911 a_{11} = 10 a_{10} + 31 a_9.
  8. Identify α=11,β=10,γ=31\alpha=11, \beta=10, \gamma=31.
  9. Calculate the required expression: γαβ=311110=2010=2\frac{\gamma - \alpha}{\beta} = \frac{31 - 11}{10} = \frac{20}{10} = 2.