Solveeit Logo

Question

Question: Let $(1 - x + x^{2})^{30} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + ........ + a_{60}x^{60}$. Mat...

Let (1x+x2)30=a0+a1x+a2x2+a3x3+........+a60x60(1 - x + x^{2})^{30} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + ........ + a_{60}x^{60}. Match List-I with List-Il and select the correct answer using the code given below the list.

LIST-ILIST-II
(P) (a02a12+a22a32+......a30)\left(\frac{a_{0}^{2} - a_{1}^{2} + a_{2}^{2} - a_{3}^{2} + ......}{a_{30}}\right)(1) 0
(Q) 4(a0+a2+a4+......(330+1))4\left(\frac{a_{0} + a_{2} + a_{4} + ......}{(3^{30} + 1)}\right)(2) 1
(R) 6(a1+a3+a5+......(1330))6\left(\frac{a_{1} + a_{3} + a_{5} + ......}{(1 - 3^{30})}\right)(3) 2
(S) a0a1a1a2+........a_{0}a_{1} - a_{1}a_{2} + ........(4) 3
(5) 4
A

(1) 0

B

(2) 1

C

(3) 2

D

(4) 3

E

(5) 4

Answer

P-2, Q-3, R-4, S-1

Explanation

Solution

Let the given polynomial be P(x)=(1x+x2)30=a0+a1x+a2x2++a60x60P(x) = (1 - x + x^{2})^{30} = a_{0} + a_{1}x + a_{2}x^{2} + \dots + a_{60}x^{60}.

We evaluate P(x)P(x) at specific values:

  1. For x=1x=1: P(1)=(11+12)30=130=1P(1) = (1 - 1 + 1^2)^{30} = 1^{30} = 1. Also, P(1)=a0+a1+a2++a60P(1) = a_0 + a_1 + a_2 + \dots + a_{60}. So, a0+a1+a2++a60=1a_0 + a_1 + a_2 + \dots + a_{60} = 1. (Equation 1)

  2. For x=1x=-1: P(1)=(1(1)+(1)2)30=(1+1+1)30=330P(-1) = (1 - (-1) + (-1)^2)^{30} = (1 + 1 + 1)^{30} = 3^{30}. Also, P(1)=a0a1+a2+a60P(-1) = a_0 - a_1 + a_2 - \dots + a_{60}. So, a0a1+a2+a60=330a_0 - a_1 + a_2 - \dots + a_{60} = 3^{30}. (Equation 2)

We also know that a0=P(0)=(10+0)30=1a_0 = P(0) = (1 - 0 + 0)^{30} = 1.

Let's analyze each part of List-I:

Part (P): (a02a12+a22a32+......a30)\left(\frac{a_{0}^{2} - a_{1}^{2} + a_{2}^{2} - a_{3}^{2} + ......}{a_{30}}\right)

The sum in the numerator is S=k=060(1)kak2S = \sum_{k=0}^{60} (-1)^k a_k^2. This sum is the coefficient of x0x^0 in the product P(x)P(1/x)P(x) \cdot P(-1/x). P(x)=(1x+x2)30P(x) = (1 - x + x^2)^{30}. P(1/x)=(1(1x)+(1x)2)30=(1+1x+1x2)30=(x2+x+1x2)30=(1+x+x2)30x60P(-1/x) = \left(1 - \left(-\frac{1}{x}\right) + \left(-\frac{1}{x}\right)^2\right)^{30} = \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^{30} = \left(\frac{x^2 + x + 1}{x^2}\right)^{30} = \frac{(1 + x + x^2)^{30}}{x^{60}}.

So, P(x)P(1/x)=(1x+x2)30(1+x+x2)30x60P(x) \cdot P(-1/x) = (1 - x + x^2)^{30} \cdot \frac{(1 + x + x^2)^{30}}{x^{60}} =((1x+x2)(1+x+x2))30x60= \frac{((1 - x + x^2)(1 + x + x^2))^{30}}{x^{60}} =((1+x2)2x2)30x60= \frac{((1 + x^2)^2 - x^2)^{30}}{x^{60}} =(1+2x2+x4x2)30x60= \frac{(1 + 2x^2 + x^4 - x^2)^{30}}{x^{60}} =(1+x2+x4)30x60= \frac{(1 + x^2 + x^4)^{30}}{x^{60}}.

The coefficient of x0x^0 in this expression is the coefficient of x60x^{60} in (1+x2+x4)30(1 + x^2 + x^4)^{30}. Let y=x2y = x^2. We need the coefficient of y30y^{30} in (1+y+y2)30(1 + y + y^2)^{30}. Let (1+y+y2)30=k=060Akyk(1 + y + y^2)^{30} = \sum_{k=0}^{60} A_k y^k. Then the coefficient of y30y^{30} is A30A_{30}. So, S=A30S = A_{30}.

Now we need to find a30a_{30}. Consider the relationship between the coefficients of (1x+x2)n(1 - x + x^2)^n and (1+x+x2)n(1 + x + x^2)^n. Let (1+x+x2)30=A0+A1x+A2x2++A60x60(1 + x + x^2)^{30} = A_0 + A_1 x + A_2 x^2 + \dots + A_{60} x^{60}. If we replace xx with x-x in the expansion of (1+x+x2)30(1 + x + x^2)^{30}: (1x+x2)30=A0A1x+A2x2+A60x60(1 - x + x^2)^{30} = A_0 - A_1 x + A_2 x^2 - \dots + A_{60} x^{60}. Comparing this with a0+a1x+a2x2++a60x60a_0 + a_1 x + a_2 x^2 + \dots + a_{60} x^{60}, we get ak=(1)kAka_k = (-1)^k A_k.

Therefore, a30=(1)30A30=A30a_{30} = (-1)^{30} A_{30} = A_{30}. So, Sa30=A30A30=1\frac{S}{a_{30}} = \frac{A_{30}}{A_{30}} = 1. Thus, (P) matches with (2).

Part (Q): 4(a0+a2+a4+......(330+1))4\left(\frac{a_{0} + a_{2} + a_{4} + ......}{(3^{30} + 1)}\right)

From Equation 1 and Equation 2: (a0+a1+a2++a60)+(a0a1+a2+a60)=1+330(a_0 + a_1 + a_2 + \dots + a_{60}) + (a_0 - a_1 + a_2 - \dots + a_{60}) = 1 + 3^{30}. 2(a0+a2+a4++a60)=1+3302(a_0 + a_2 + a_4 + \dots + a_{60}) = 1 + 3^{30}. So, a0+a2+a4++a60=1+3302a_0 + a_2 + a_4 + \dots + a_{60} = \frac{1 + 3^{30}}{2}. Substitute this into the expression: 4(1+3302330+1)=4(1+3302(330+1))=4×12=24\left(\frac{\frac{1 + 3^{30}}{2}}{3^{30} + 1}\right) = 4\left(\frac{1 + 3^{30}}{2(3^{30} + 1)}\right) = 4 \times \frac{1}{2} = 2. Thus, (Q) matches with (3).

Part (R): 6(a1+a3+a5+......(1330))6\left(\frac{a_{1} + a_{3} + a_{5} + ......}{(1 - 3^{30})}\right)

From Equation 1 and Equation 2: (a0+a1+a2++a60)(a0a1+a2+a60)=1330(a_0 + a_1 + a_2 + \dots + a_{60}) - (a_0 - a_1 + a_2 - \dots + a_{60}) = 1 - 3^{30}. 2(a1+a3+a5++a59)=13302(a_1 + a_3 + a_5 + \dots + a_{59}) = 1 - 3^{30}. So, a1+a3+a5++a59=13302a_1 + a_3 + a_5 + \dots + a_{59} = \frac{1 - 3^{30}}{2}. Substitute this into the expression: 6(133021330)=6(13302(1330))=6×12=36\left(\frac{\frac{1 - 3^{30}}{2}}{1 - 3^{30}}\right) = 6\left(\frac{1 - 3^{30}}{2(1 - 3^{30})}\right) = 6 \times \frac{1}{2} = 3. Thus, (R) matches with (4).

Part (S): a0a1a1a2+........a_{0}a_{1} - a_{1}a_{2} + ........

The sum is S=a0a1a1a2+a2a3a3a4+a59a60S' = a_0 a_1 - a_1 a_2 + a_2 a_3 - a_3 a_4 + \dots - a_{59} a_{60}. This can be written as k=059(1)kakak+1\sum_{k=0}^{59} (-1)^k a_k a_{k+1}. We use the relation ak=(1)kAka_k = (-1)^k A_k. S=k=059(1)k((1)kAk)((1)k+1Ak+1)S' = \sum_{k=0}^{59} (-1)^k ((-1)^k A_k) ((-1)^{k+1} A_{k+1}) S=k=059(1)k(1)k(1)k+1AkAk+1S' = \sum_{k=0}^{59} (-1)^k (-1)^k (-1)^{k+1} A_k A_{k+1} S=k=059(1)3k+1AkAk+1S' = \sum_{k=0}^{59} (-1)^{3k+1} A_k A_{k+1}. If kk is even, 3k+13k+1 is odd. (1)3k+1=1(-1)^{3k+1} = -1. If kk is odd, 3k+13k+1 is even. (1)3k+1=1(-1)^{3k+1} = 1. So, S=A0A1+A1A2A2A3+A3A4+A59A60S' = -A_0 A_1 + A_1 A_2 - A_2 A_3 + A_3 A_4 - \dots + A_{59} A_{60}.

Consider the coefficient of x1x^{-1} in the expansion of P(x)P(1/x)P(x) \cdot P'(1/x). This is not straightforward. Let's consider the derivative of P(x)P(x)=(1+x2+x4)30P(x)P(-x) = (1+x^2+x^4)^{30}. P(x)P(x)=(1+x2+x4)30P(x)P(-x) = (1+x^2+x^4)^{30}. Since (1+x2+x4)30(1+x^2+x^4)^{30} is an even function (only contains even powers of xx), its derivative must be an odd function (only contains odd powers of xx). Let Q(x)=(1+x2+x4)30Q(x) = (1+x^2+x^4)^{30}. Then Q(x)Q'(x) has only odd powers of xx. P(x)=akxkP(x) = \sum a_k x^k. P(x)=kakxk1P'(x) = \sum k a_k x^{k-1}. P(x)=ak(1)kxkP(-x) = \sum a_k (-1)^k x^k. P(x)=kak(1)k(x)k1(1)=kak(1)k+1xk1P'(-x) = \sum k a_k (-1)^k (-x)^{k-1} (-1) = \sum k a_k (-1)^{k+1} x^{k-1}. Derivative of P(x)P(x)P(x)P(-x) is P(x)P(x)+P(x)P(x)P'(x)P(-x) + P(x)P'(-x). The coefficient of x0x^0 in this derivative would be 0.

Let's use the property ak=a60ka_k = a_{60-k}. This is true for symmetric polynomials. For (1x+x2)30(1-x+x^2)^{30}, the coefficients are symmetric, ak=a60ka_k = a_{60-k}. So a0=a60a_0 = a_{60}, a1=a59a_1 = a_{59}, a2=a58a_2 = a_{58}, and so on. The sum S=a0a1a1a2+a2a3a59a60S' = a_0 a_1 - a_1 a_2 + a_2 a_3 - \dots - a_{59} a_{60}. Using a60=a0a_{60} = a_0, a59=a1a_{59} = a_1, etc. The last term is a59a60=a1a0-a_{59}a_{60} = -a_1 a_0. The sum becomes a0a1a1a2+a2a3a1a0a_0 a_1 - a_1 a_2 + a_2 a_3 - \dots - a_1 a_0. If the number of terms is even, the sum will be 0. The terms are akak+1a_k a_{k+1} for k=0,,59k=0, \dots, 59. There are 60 terms. S=(a0a1a59a60)+(a1a2+a58a59)+S' = (a_0 a_1 - a_{59} a_{60}) + (-a_1 a_2 + a_{58} a_{59}) + \dots Since a59=a1a_{59} = a_1 and a60=a0a_{60} = a_0, the last term a59a60=a1a0-a_{59}a_{60} = -a_1 a_0. The first term is a0a1a_0 a_1. So a0a1a1a0=0a_0 a_1 - a_1 a_0 = 0. The second term is a1a2-a_1 a_2. The second to last term is a58a59-a_{58}a_{59}. a58=a2a_{58}=a_2, a59=a1a_{59}=a_1. So a2a1-a_2 a_1. This pattern seems to cancel out. Let's write it out: S=a0a1a1a2+a2a3a3a4++a58a59a59a60S' = a_0 a_1 - a_1 a_2 + a_2 a_3 - a_3 a_4 + \dots + a_{58} a_{59} - a_{59} a_{60}. Using ak=a60ka_k = a_{60-k}: a59=a1a_{59} = a_1, a60=a0a_{60} = a_0. So a59a60=a1a0-a_{59}a_{60} = -a_1 a_0. a58=a2a_{58} = a_2, a59=a1a_{59} = a_1. So a58a59=a2a1a_{58}a_{59} = a_2 a_1. a57=a3a_{57} = a_3, a58=a2a_{58} = a_2. So a57a58=a3a2-a_{57}a_{58} = -a_3 a_2. The sum is: (a0a1a1a0)+(a1a2+a1a2)+(a2a3a2a3)+(a_0 a_1 - a_1 a_0) + (-a_1 a_2 + a_1 a_2) + (a_2 a_3 - a_2 a_3) + \dots All terms cancel out in pairs. Thus, S=0S' = 0. So, (S) matches with (1).

Summary of matches: (P) \to (2) (Q) \to (3) (R) \to (4) (S) \to (1)