Question
Question: Let $(1 - x + x^{2})^{30} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + ........ + a_{60}x^{60}$. Mat...
Let (1−x+x2)30=a0+a1x+a2x2+a3x3+........+a60x60. Match List-I with List-Il and select the correct answer using the code given below the list.
LIST-I | LIST-II |
---|---|
(P) (a30a02−a12+a22−a32+......) | (1) 0 |
(Q) 4((330+1)a0+a2+a4+......) | (2) 1 |
(R) 6((1−330)a1+a3+a5+......) | (3) 2 |
(S) a0a1−a1a2+........ | (4) 3 |
(5) 4 |

(1) 0
(2) 1
(3) 2
(4) 3
(5) 4
P-2, Q-3, R-4, S-1
Solution
Let the given polynomial be P(x)=(1−x+x2)30=a0+a1x+a2x2+⋯+a60x60.
We evaluate P(x) at specific values:
-
For x=1: P(1)=(1−1+12)30=130=1. Also, P(1)=a0+a1+a2+⋯+a60. So, a0+a1+a2+⋯+a60=1. (Equation 1)
-
For x=−1: P(−1)=(1−(−1)+(−1)2)30=(1+1+1)30=330. Also, P(−1)=a0−a1+a2−⋯+a60. So, a0−a1+a2−⋯+a60=330. (Equation 2)
We also know that a0=P(0)=(1−0+0)30=1.
Let's analyze each part of List-I:
Part (P): (a30a02−a12+a22−a32+......)
The sum in the numerator is S=∑k=060(−1)kak2. This sum is the coefficient of x0 in the product P(x)⋅P(−1/x). P(x)=(1−x+x2)30. P(−1/x)=(1−(−x1)+(−x1)2)30=(1+x1+x21)30=(x2x2+x+1)30=x60(1+x+x2)30.
So, P(x)⋅P(−1/x)=(1−x+x2)30⋅x60(1+x+x2)30 =x60((1−x+x2)(1+x+x2))30 =x60((1+x2)2−x2)30 =x60(1+2x2+x4−x2)30 =x60(1+x2+x4)30.
The coefficient of x0 in this expression is the coefficient of x60 in (1+x2+x4)30. Let y=x2. We need the coefficient of y30 in (1+y+y2)30. Let (1+y+y2)30=∑k=060Akyk. Then the coefficient of y30 is A30. So, S=A30.
Now we need to find a30. Consider the relationship between the coefficients of (1−x+x2)n and (1+x+x2)n. Let (1+x+x2)30=A0+A1x+A2x2+⋯+A60x60. If we replace x with −x in the expansion of (1+x+x2)30: (1−x+x2)30=A0−A1x+A2x2−⋯+A60x60. Comparing this with a0+a1x+a2x2+⋯+a60x60, we get ak=(−1)kAk.
Therefore, a30=(−1)30A30=A30. So, a30S=A30A30=1. Thus, (P) matches with (2).
Part (Q): 4((330+1)a0+a2+a4+......)
From Equation 1 and Equation 2: (a0+a1+a2+⋯+a60)+(a0−a1+a2−⋯+a60)=1+330. 2(a0+a2+a4+⋯+a60)=1+330. So, a0+a2+a4+⋯+a60=21+330. Substitute this into the expression: 4(330+121+330)=4(2(330+1)1+330)=4×21=2. Thus, (Q) matches with (3).
Part (R): 6((1−330)a1+a3+a5+......)
From Equation 1 and Equation 2: (a0+a1+a2+⋯+a60)−(a0−a1+a2−⋯+a60)=1−330. 2(a1+a3+a5+⋯+a59)=1−330. So, a1+a3+a5+⋯+a59=21−330. Substitute this into the expression: 6(1−33021−330)=6(2(1−330)1−330)=6×21=3. Thus, (R) matches with (4).
Part (S): a0a1−a1a2+........
The sum is S′=a0a1−a1a2+a2a3−a3a4+⋯−a59a60. This can be written as ∑k=059(−1)kakak+1. We use the relation ak=(−1)kAk. S′=∑k=059(−1)k((−1)kAk)((−1)k+1Ak+1) S′=∑k=059(−1)k(−1)k(−1)k+1AkAk+1 S′=∑k=059(−1)3k+1AkAk+1. If k is even, 3k+1 is odd. (−1)3k+1=−1. If k is odd, 3k+1 is even. (−1)3k+1=1. So, S′=−A0A1+A1A2−A2A3+A3A4−⋯+A59A60.
Consider the coefficient of x−1 in the expansion of P(x)⋅P′(1/x). This is not straightforward. Let's consider the derivative of P(x)P(−x)=(1+x2+x4)30. P(x)P(−x)=(1+x2+x4)30. Since (1+x2+x4)30 is an even function (only contains even powers of x), its derivative must be an odd function (only contains odd powers of x). Let Q(x)=(1+x2+x4)30. Then Q′(x) has only odd powers of x. P(x)=∑akxk. P′(x)=∑kakxk−1. P(−x)=∑ak(−1)kxk. P′(−x)=∑kak(−1)k(−x)k−1(−1)=∑kak(−1)k+1xk−1. Derivative of P(x)P(−x) is P′(x)P(−x)+P(x)P′(−x). The coefficient of x0 in this derivative would be 0.
Let's use the property ak=a60−k. This is true for symmetric polynomials. For (1−x+x2)30, the coefficients are symmetric, ak=a60−k. So a0=a60, a1=a59, a2=a58, and so on. The sum S′=a0a1−a1a2+a2a3−⋯−a59a60. Using a60=a0, a59=a1, etc. The last term is −a59a60=−a1a0. The sum becomes a0a1−a1a2+a2a3−⋯−a1a0. If the number of terms is even, the sum will be 0. The terms are akak+1 for k=0,…,59. There are 60 terms. S′=(a0a1−a59a60)+(−a1a2+a58a59)+… Since a59=a1 and a60=a0, the last term −a59a60=−a1a0. The first term is a0a1. So a0a1−a1a0=0. The second term is −a1a2. The second to last term is −a58a59. a58=a2, a59=a1. So −a2a1. This pattern seems to cancel out. Let's write it out: S′=a0a1−a1a2+a2a3−a3a4+⋯+a58a59−a59a60. Using ak=a60−k: a59=a1, a60=a0. So −a59a60=−a1a0. a58=a2, a59=a1. So a58a59=a2a1. a57=a3, a58=a2. So −a57a58=−a3a2. The sum is: (a0a1−a1a0)+(−a1a2+a1a2)+(a2a3−a2a3)+… All terms cancel out in pairs. Thus, S′=0. So, (S) matches with (1).
Summary of matches: (P) → (2) (Q) → (3) (R) → (4) (S) → (1)