Solveeit Logo

Question

Question: Let \( 0 < x < \dfrac{\pi }{4} \) , then \( \sec 2x - \tan 2x \) is equal to A) \( \tan \left( {x ...

Let 0<x<π40 < x < \dfrac{\pi }{4} , then sec2xtan2x\sec 2x - \tan 2x is equal to
A) tan(xπ4)\tan \left( {x - \dfrac{\pi }{4}} \right)
B) tan(π4x)\tan \left( {\dfrac{\pi }{4} - x} \right)
C) tan(x+π4)\tan \left( {x + \dfrac{\pi }{4}} \right)
D) tan(π4+x)\tan \left( {\dfrac{\pi }{4} + x} \right)

Explanation

Solution

Hint : In this question, we have to evaluate the given trigonometric expression. Here, we will use trigonometric and algebraic identities in order to simplify the given expression and convert the given terms in terms of tanx\tan x , which helps us to get the required answer.

Complete step-by-step answer :
The given trigonometric expression is sec2xtan2x\sec 2x - \tan 2x .
As we know that,
cosx=1secx\cos x = \dfrac{1}{{\sec x}}
secx=1cosx\Rightarrow \sec x = \dfrac{1}{{\cos x}}
Therefore, sec2x=1cos2x\sec 2x = \dfrac{1}{{\cos 2x}}
And, also we know that,
tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
Therefore, tan2x=sin2xcos2x\tan 2x = \dfrac{{\sin 2x}}{{\cos 2x}}
Applying the values of sec2x\sec 2x and tan2x\tan 2x in sec2xtan2x\sec 2x - \tan 2x , we get,
=1cos2xsin2xcos2x= \dfrac{1}{{\cos 2x}} - \dfrac{{\sin 2x}}{{\cos 2x}}
= 1sin2xcos2x\dfrac{{1 - \sin 2x}}{{\cos 2x}}
Now, as we know,
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
And, sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
Also, cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x
Now, substituting these values, we get,
= sin2x+cos2x2sinxcosxcos2xsin2x\dfrac{{{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}
Now, we know that,
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
Here, the numerator is in the form of the above property. Therefore, we have,
= (cosxsinx)2(cos2xsin2x)\dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {{{\cos }^2}x - {{\sin }^2}x} \right)}}
Where, a=cosxa = \cos x and b=sinxb = \sin x
Here, we can further simplify it by expanding the denominator,
As, we see the denominator is in the property,
a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
Therefore, we have,
=(cosxsinx)2(cosx+sinx)(cosxsinx)= \dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)}}
Where, a=cosxa = \cos x and b=sinxb = \sin x
As, cosxsinx\cos x - \sin x is common in both numerator and denominator. Now, cancel out the terms.
We have,
= cosxsinxcosx+sinx\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}
Dividing the numerator and denominator by cosx\cos x , in order to get the values in terms of tanx\tan x ,
=cosxcosxsinxcosxcosxcosx+sinxcosx= \dfrac{{\dfrac{{\cos x}}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{\cos x}}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}}}
On cancelling and substituting tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} , we get,
= 1tanx1+tanx\dfrac{{1 - \tan x}}{{1 + \tan x}}
We know from the trigonometric table that,
tanπ4=1\tan \dfrac{\pi }{4} = 1
Therefore,
= tanπ4tanx1+tanπ4tanx\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}
This is in the form of the trigonometric identity,
tan(ab)=tanatanb1+tanatanb\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}
Where, a=π4a = \dfrac{\pi }{4} and b=xb = x
sec2xtan2x=tan(π4x)\Rightarrow \sec 2x - \tan 2x = \tan \left( {\dfrac{\pi }{4} - x} \right)
So, the correct answer is “Option B”.

Note : In this question, it is important to note that whenever these types of questions are given, be clear and confident about the identities which helps the simplification process. However, at this step cosxsinxcosx+sinx\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} , instead of dividing the numerator and denominator by cosx\cos x , we can divide the numerator and the denominator by 2\sqrt 2 . Then, by using the values from trigonometric table and also using the trigonometric identities sin(ab)=sinacosbcosasinbsin\left( {a - b} \right) = \sin a\cos b - \cos a\sin b and cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b we can reach the solution.