Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let 0rn0 \leq r \leq n. If nCr+1:nCr:nCr1=55:35:21,^nC_{r+1} : ^nC_r : ^nC_{r-1} = 55 : 35 : 21,then 2n+5r2n + 5r is equal to:

A

60

B

62

C

50

D

55

Answer

50

Explanation

Solution

n+1CrnCr=5535\frac{{n+1}C_r}{nC_r} = \frac{55}{35}

(n+1)!(r+1)!(nr)!÷n!r!(nr)!=117\frac{(n+1)!}{(r+1)!(n-r)!} \div \frac{n!}{r!(n-r)!} = \frac{11}{7}

n+1r+1=117\frac{n+1}{r+1} = \frac{11}{7}

7n=4+11r7n = 4 + 11r

nCrn1Cr1=3521\frac{nC_r}{n-1C_{r-1}} = \frac{35}{21}

n!r!(nr)!÷(n1)!(r1)!(nr)!=53\frac{n!}{r!(n-r)!} \div \frac{(n-1)!}{(r-1)!(n-r)!} = \frac{5}{3}

nr=53\frac{n}{r} = \frac{5}{3}

3n=5r3n = 5r

Solving for r=6r = 6 and n=10n = 10:

2n+5r=502n + 5r = 50