Solveeit Logo

Question

Statistics Question on Estimation

Let 0.2, 1.2, 1.4, 0.3, 0.9, 0.7 be the observed values of a random sample of size 6 from a continuous distribution with the probability density function
f(x)={1,0<x12 12θ1,12<xθ 0,otherwise,f(x) = \begin{cases} 1, & 0< x \le \frac{1}{2} \\\ \frac{1}{2\theta-1}, & \frac{1}{2} \lt x \le \theta \\\ 0, & \text{otherwise,}\end{cases}
where θ > 12\frac{1}{2} is unknown. Then the maximum likelihood estimate and the method of moments estimate of θ, respectively, are

A

75\frac{7}{5} and 2

B

4760\frac{47}{60} and 3215\frac{32}{15}

C

75\frac{7}{5} and 3215\frac{32}{15}

D

75\frac{7}{5} and 4760\frac{47}{60}

Answer

75\frac{7}{5} and 3215\frac{32}{15}

Explanation

Solution

The correct option is (C) : 75\frac{7}{5} and 3215\frac{32}{15}.