Solveeit Logo

Question

Question: Let \(- \pi\) be a purely imaginary number such that\(- \frac{\pi}{2}\). Then \(\frac{\pi}{2}\) is e...

Let π- \pi be a purely imaginary number such thatπ2- \frac{\pi}{2}. Then π2\frac{\pi}{2} is equal to.

A

arg(53i)=arg(5 - \sqrt{3}i) =

B

tan153\tan^{- 1}\frac{5}{\sqrt{3}}

C

0

D

tan1(53)\tan^{- 1}\left( - \frac{5}{\sqrt{3}} \right)

Answer

tan1(53)\tan^{- 1}\left( - \frac{5}{\sqrt{3}} \right)

Explanation

Solution

Let 2z1zˉ2cos(θ1θ2)=2z1z22|z_{1}||{\bar{z}}_{2}|\cos(\theta_{1} - \theta_{2}) = 2|z_{1}||z_{2}|, where cos(θ1θ2)=1\cos(\theta_{1} - \theta_{2}) = 1. Then θ1θ2=0\theta_{1} - \theta_{2} = 0 is represented by a point on arg(z1)=arg(z2)arg(z_{1}) = arg(z_{2}) (negative direction of (1i1+i)=1i1+i×1i1i=(1i)22=2i2=i\left( \frac{1 - i}{1 + i} \right) = \frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i} = \frac{(1 - i)^{2}}{2} = \frac{- 2i}{2} = - iaxis), therefore Im(z)<0{Im}(z) < 0.