Solveeit Logo

Question

Mathematics Question on Application of derivatives

Length of the subtangent at (x1,y1) (x_1, y_1) on xnym=am+n,m,n>0,x^n y^m = a^{m+n}, m, n > 0, is

A

nmx1\frac {n}{m}|x_1|

B

mnx1\frac {m}{n}|x_1|

C

nmy1\frac {n}{m}|y_1|

D

mny1\frac {m}{n}|y_1|

Answer

mnx1\frac {m}{n}|x_1|

Explanation

Solution

Given, xnym=am+n,m,n>0x^{n}y^{m} = a^{m + n}, m, n >\, 0
Taking logarithm on both sides, we get
log (xnym)=logam+n\left(x^{n}y^{m}\right) = log \,a^{m + n}
logxn+logym=(m+n)\Rightarrow log x^{n} + log\, y^{m} = \left(m + n\right) log a
nlogx+mlogy=(m+n)loga...(i)\Rightarrow n log x + m log y = \left(m + n\right) log a\quad ... \left(i\right)
On differentiating E (i) w.r.t. 'x', we get
nx+my=0\frac{n}{x}+\frac{m}{y} = 0
mydydx=nx\Rightarrow \frac{m}{y} \frac{dy}{dx} = -\frac{n}{x}
dydx=(nm)(yx)\Rightarrow \frac{dy}{dx} = -\left(\frac{n}{m}\right)\left(\frac{y}{x}\right)
\therefore Length of subtangent
=ydy/dx= \frac{y}{dy / dx}
=y(nm)(yx)= \frac{y}{-\left(\frac{n}{m}\right)\left(\frac{y}{x}\right)}
=mxn= \frac{-mx}{n}
\therefore Length of sub tangent at (x1,y1)=mnx1\left(x_{1}, y_{1}\right) = \frac{m}{n}\left|x_{1}\right|