Solveeit Logo

Question

Question: Length of the shortest normal chord of the parabola y<sup>2</sup> = 4x is-...

Length of the shortest normal chord of the parabola y2 = 4x is-

A

a27\sqrt{27}

B

3a3\sqrt{3}

C

2a27\sqrt{27}

D

None of these

Answer

2a27\sqrt{27}

Explanation

Solution

Let AB be a normal chord, where

A ŗ (at12, 2at2), B ŗ (at22, 2at2) . We have

t2 = –t12t1\frac{2}{t_{1}}.

Now, AB2 = [a2(t12 – t22)]2 + 4a2 (t1 – t2)2

= a2(t1 – t2)2 {(t1 + t2)2 + 4}

= a2 (t1+t1+2t1)2\left( t_{1} + t_{1} + \frac{2}{t_{1}} \right)^{2} (4t12+4)\left( \frac{4}{t_{1}^{2}} + 4 \right)

= 16a2(1+t12)3t14\frac{16a^{2}(1 + t_{1}^{2})^{3}}{t_{1}^{4}}

Ž d(AB2)dt1\frac{d(AB^{2})}{dt_{1}} = 16a2 (t14[3(1+t12)2.2t1](1+t12)3.4t13t18)\left( \frac{t_{1}^{4}\lbrack 3(1 + t_{1}^{2})^{2}.2t_{1}\rbrack - (1 + t_{1}^{2})^{3}.4t_{1}^{3}}{t_{1}^{8}} \right)

= a2.32(1+t12)2t15\frac{a^{2}.32(1 + t_{1}^{2})^{2}}{t_{1}^{5}} (t12 – 2)

t1 = 2\sqrt{2} is indeed the point of minima of AB2. Thus,

ABmin = 4a2\frac{4a}{2} (1 + 2)3/2 = 2a27\sqrt{27}units.