Solveeit Logo

Question

Question: Length of subtangent and subnormal at the point \(\left( \frac{- 5\sqrt{3}}{2},2 \right)\)of the ell...

Length of subtangent and subnormal at the point (532,2)\left( \frac{- 5\sqrt{3}}{2},2 \right)of the ellipse x225+y216=1\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1are

A

(532103)\left( \frac{5\sqrt{3}}{2} - \frac{10}{\sqrt{3}} \right), 835\frac{8\sqrt{3}}{5}

B

(532+103)\left( \frac{5\sqrt{3}}{2} + \frac{10}{\sqrt{3}} \right), 8310\frac{8\sqrt{3}}{10}

C

(532+123)\left( \frac{5\sqrt{3}}{2} + \frac{12}{\sqrt{3}} \right), 1635\frac{16\sqrt{3}}{5}

D

None of these

Answer

(532103)\left( \frac{5\sqrt{3}}{2} - \frac{10}{\sqrt{3}} \right), 835\frac{8\sqrt{3}}{5}

Explanation

Solution

Here a2=25,b2=16,x1=532a^{2} = 25,b^{2} = 16,x_{1} = \frac{- 5\sqrt{3}}{2}. Length of subtangent =a2x1x1=2553/2+532=532103\left| \frac{a^{2}}{x_{1}} - x_{1} \right| = \left| \frac{25}{- 5\sqrt{3}/2} + \frac{5\sqrt{3}}{2} \right| = \left| \frac{5\sqrt{3}}{2} - \frac{10}{\sqrt{3}} \right|.

Length of subnormal =b2a2x1=1625(532)=835= \left| \frac{b^{2}}{a^{2}}x_{1} \right| = \left| \frac{16}{25}\left( \frac{- 5\sqrt{3}}{2} \right) \right| = \left| \frac{8\sqrt{3}}{5} \right|