Solveeit Logo

Question

Question: Length of latus rectum of the parabola whose parametric equation is x = t<sup>2</sup> + t + 1, y = t...

Length of latus rectum of the parabola whose parametric equation is x = t2 + t + 1, y = t2 – t + 1 where tÎR, is equal to

A

8

B

4

C

2

D

None

Answer

None

Explanation

Solution

x = t2 + t + 1

y = t2 – t + 1

x – y = 2t

t = (xy2)\left( \frac{x - y}{2} \right)

x = (xy)24+xy2+1\frac{(x - y)^{2}}{4} + \frac{x - y}{2} + 1

(x – y)2 = 2(2x – x + y – 2)

(x – y)2 = 2(x + y – 2)

2(xy2)2=2×2(x+y22)\left( \frac{x - y}{\sqrt{2}} \right)^{2} = \sqrt{2} \times 2\left( \frac{x + y - 2}{\sqrt{2}} \right)

y2 = 4ax

4a = 2\sqrt{2}