Question
Question: Length of barrel of a gun is l=5.0m and mass of the shell is \({{m}_{0}}=45\text{kg}\). During firin...
Length of barrel of a gun is l=5.0m and mass of the shell is m0=45kg. During firing, combustion of the gunpowder takes place at a constant rate r=2.0×103skg , the gun-powder is completely transformed into gas of average molar mass 5.0×10−2 molkg , temperature T = 1000 K of the gases remains fairly constant and displacement of the shell inside the barrel is proportional to ta (t is time and a is a constant). Neglecting all forces other than force of the propellant gas during firing, find the muzzle velocity of the shell.
Solution
Hint: The internal energy for the monatomic gas is given as:
⇒U=23nRT
Where, n is the number of the moles of gas, R is the gas constant and T is the temperature.
Complete step-by-step answer:
Given:
Length of the barrel, l = 5.0 m
Mass of the shell, m0=45kg
Combustion rate, r=2.0×103skg
Average molar mass, 5.0×10−2 molkg
Temperature T = 1000 K
Calculation:
The combustion rate is given in the question,
So, the Mass of the powder burnt at time dt is given as,
⇒n=Mrdt⇒n=5.0×10−22.0×103dt⇒n=0.4×105×dt mole
The energy of the monatomic gas is given as:
⇒U=23nRT⇒U=23×0.4×105dt×1000×8.314⇒U=4.98×108 dt J … (1)
Now, displacement of the shell inside the barrel is proportional to
⇒x∝ta⇒x=kta⇒dxx=adtt⇒xdx=axtdx⇒dt=axtdx
Multiplying both side of equation by we get,
⇒4.98×108×dt=ax4.98×108×tdx … (2)
Comparing equation (1) and (2):
The total energy transferred is given by,
⇒E=0∫5ax4.98×108tdx⇒E=0∫55a4.98×108tdx
This energy is balanced by the kinetic energy. So,
⇒21mv2=5a4.98×108tdx⇒v=5am2×4.98×108tdx⇒v=45×5×a4.98×108tdx⇒v=0.47×104at
Note: The energy of the gas is balanced by the kinetic energy of the shell because the process of the combustion of the gas takes place only when the shell is fired. This combustion of gas converts the gunpowder in the gas.