Solveeit Logo

Question

Question: $\left(\frac{1+cos \frac{\pi}{8}-i \sin \frac{\pi}{8}}{1+cos \frac{\pi}{8}+i \sin \frac{\pi}{8}}\rig...

(1+cosπ8isinπ81+cosπ8+isinπ8)8\left(\frac{1+cos \frac{\pi}{8}-i \sin \frac{\pi}{8}}{1+cos \frac{\pi}{8}+i \sin \frac{\pi}{8}}\right)^{8}

Answer

-1

Explanation

Solution

The problem asks us to evaluate the given complex number expression:

(1+cosπ8isinπ81+cosπ8+isinπ8)8\left(\frac{1+\cos \frac{\pi}{8}-i \sin \frac{\pi}{8}}{1+\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}}\right)^{8}

Let z=cosπ8+isinπ8z = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}. By Euler's formula, z=eiπ8z = e^{i \frac{\pi}{8}}. Since zz is a complex number on the unit circle (i.e., z=1|z|=1), its conjugate zˉ\bar{z} is equal to 1/z1/z. So, zˉ=cosπ8isinπ8=eiπ8\bar{z} = \cos \frac{\pi}{8} - i \sin \frac{\pi}{8} = e^{-i \frac{\pi}{8}}.

Now, let's rewrite the expression inside the parenthesis using zz:

1+cosπ8isinπ81+cosπ8+isinπ8=1+zˉ1+z\frac{1+\cos \frac{\pi}{8}-i \sin \frac{\pi}{8}}{1+\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}} = \frac{1+\bar{z}}{1+z}

Since zˉ=1/z\bar{z} = 1/z, we can substitute this into the expression:

1+1z1+z=z+1z1+z\frac{1+\frac{1}{z}}{1+z} = \frac{\frac{z+1}{z}}{1+z}

Assuming 1+z01+z \neq 0 (which is true since z=eiπ81z = e^{i \frac{\pi}{8}} \neq -1), we can cancel out the (1+z)(1+z) term:

1z\frac{1}{z}

So, the expression inside the parenthesis simplifies to 1z\frac{1}{z}. Substituting back the value of zz:

1z=1cosπ8+isinπ8=cosπ8isinπ8=eiπ8\frac{1}{z} = \frac{1}{\cos \frac{\pi}{8} + i \sin \frac{\pi}{8}} = \cos \frac{\pi}{8} - i \sin \frac{\pi}{8} = e^{-i \frac{\pi}{8}}

Now, we need to raise this simplified expression to the power of 8:

(eiπ8)8\left(e^{-i \frac{\pi}{8}}\right)^{8}

Using De Moivre's theorem, which states that (eiθ)n=einθ(e^{i\theta})^n = e^{in\theta}:

eiπ8×8=eiπe^{-i \frac{\pi}{8} \times 8} = e^{-i\pi}

Finally, we evaluate eiπe^{-i\pi} using Euler's formula eiϕ=cosϕ+isinϕe^{i\phi} = \cos \phi + i \sin \phi:

eiπ=cos(π)+isin(π)e^{-i\pi} = \cos(-\pi) + i \sin(-\pi)

We know that cos(π)=cos(π)=1\cos(-\pi) = \cos(\pi) = -1 and sin(π)=sin(π)=0\sin(-\pi) = -\sin(\pi) = 0.

eiπ=1+i(0)=1e^{-i\pi} = -1 + i(0) = -1

The final answer is -1.

Explanation of the solution:

  1. Let z=cosπ8+isinπ8z = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}. By Euler's formula, z=eiπ8z = e^{i \frac{\pi}{8}}.
  2. Since z=1|z|=1, its conjugate zˉ=cosπ8isinπ8\bar{z} = \cos \frac{\pi}{8} - i \sin \frac{\pi}{8} is equal to 1/z1/z.
  3. Substitute zz and zˉ\bar{z} into the given expression: (1+zˉ1+z)8\left(\frac{1+\bar{z}}{1+z}\right)^{8}.
  4. Simplify the term inside the parenthesis: 1+zˉ1+z=1+1/z1+z=(z+1)/z1+z=1z\frac{1+\bar{z}}{1+z} = \frac{1+1/z}{1+z} = \frac{(z+1)/z}{1+z} = \frac{1}{z}.
  5. So, the expression becomes (1z)8\left(\frac{1}{z}\right)^{8}.
  6. Substitute z=eiπ8z = e^{i \frac{\pi}{8}} back: (1eiπ8)8=(eiπ8)8\left(\frac{1}{e^{i \frac{\pi}{8}}}\right)^{8} = \left(e^{-i \frac{\pi}{8}}\right)^{8}.
  7. Apply De Moivre's theorem: eiπ8×8=eiπe^{-i \frac{\pi}{8} \times 8} = e^{-i\pi}.
  8. Evaluate eiπ=cos(π)+isin(π)=1+0i=1e^{-i\pi} = \cos(-\pi) + i \sin(-\pi) = -1 + 0i = -1.