Solveeit Logo

Question

Question: \(\left( x+1 \right)\) is a factor of \({{x}^{n}}+1\) only if (a) n is an odd integer (b) n is a...

(x+1)\left( x+1 \right) is a factor of xn+1{{x}^{n}}+1 only if
(a) n is an odd integer
(b) n is an even integer
(c) n is a negative integer
(d) n is a positive integer.

Explanation

Solution

Hint: Use binomial theorem to prove the algebraic identity
anbn=(ab)(nC1bn1+.......+nCn(ab)n1)...........(i){{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+.......+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)...........(i)
By using this relate the question to options.

Complete step- by-step solution -
Proof of binomial theorem by Mathematical Induction:
The expression we aim to prove:
(a+b)n=an+nC1an1b+.........+nCranrbr+........+nCn1abn1+bn{{\left( a+b \right)}^{n}}={{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+.........+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+........+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{{b}^{n}}
We will first prove that relation true for n = 1, n = 2.
Case 1: n = 1
(a+b)1=a1+b1{{\left( a+b \right)}^{1}}={{a}^{1}}+{{b}^{1}}
Which is true
as the left-hand side is equal to the right hand side.
Case 2: n = 2
(a+b)2=a2+2C1a21b+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+{}^{2}{{C}_{1}}{{a}^{2-1}}b+{{b}^{2}}
By simplifying, we get:
(a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
which is true
it is a general algebraic identity
Now we should take the case where,
n = k,
By substituting this, we get:
(a+b)k=ak+kC1ak1b1+kC2ak2b2+kCk1abk1+bk{{\left( a+b \right)}^{k}}={{a}^{k}}+{}^{k}{{C}_{1}}{{a}^{k-1}}{{b}^{1}}+{}^{k}{{C}_{2}}{{a}^{k-2}}{{b}^{2}}+{}^{k}{{C}_{k-1}}a{{b}^{k-1}}+{{b}^{k}}
Now consider the expansion for n=k+1n= k+ 1 :
(a+b)k+1=(a+b)(a+b)k{{\left( a+b \right)}^{k+1}}=\left( a+b \right){{\left( a+b \right)}^{k}}
By substituting the case of n = k into this equation we get:
(a+b)k=(a+b)(ak+kC1ak1b+kC2ak2b2+........+bk){{\left( a+b \right)}^{k}}=\left( a+b \right)\left( {{a}^{k}}+{}^{k}{{C}_{1}}{{a}^{k-1}}b+{}^{k}{{C}_{2}}{{a}^{k-2}}{{b}^{2}}+........+{{b}^{k}} \right)
By using distributive law, we get:
(a + b).c = ac+ bc
(a+b)k=ak+1+(1+kC1)akb+(kC1+kC2)ak1b2+.......+bk+1{{\left( a+b \right)}^{k}}={{a}^{k+1}}+\left( 1+{}^{k}{{C}_{1}} \right){{a}^{k}}b+\left( {}^{k}{{C}_{1}}+{}^{k}{{C}_{2}} \right){{a}^{k-1}}{{b}^{2}}+.......+{{b}^{k+1}}
We know pascal’s identity on combinations is:
nCr1+nCr=n+1Cr{}^{n}{{C}_{r-1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r}}
By using Pascal’s identity, we get:
(a+b)k+1=ak+1+k+1C1akb+........+k+1Crak+1rbr+..........+bk+1{{\left( a+b \right)}^{k+1}}={{a}^{k+1}}+{}^{k+1}{{C}_{1}}{{a}^{k}}b+........+{}^{k+1}{{C}_{r}}{{a}^{k+1-r}}{{b}^{r}}+..........+{{b}^{k+1}}
So, by assuming n = k is correct we proved n = k + 1 is correct
So, the binomial theorem is proved by Mathematical Induction.
According to binomial theorem, we have:
(a+b)n=k=0nnCkakbnk{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{a}^{k}}{{b}^{n-k}}}
We can say:
a=[(ab)+b]a=\left[ \left( a-b \right)+b \right]
Putting this in left hand side of equation
anbn=(ab)[nC1bn1+.............+nCn(ab)n1]{{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left[ {}^{n}{{C}_{1}}{{b}^{n-1}}+.............+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right]
We get:
anbn=[(ab)+b]nbn{{a}^{n}}-{{b}^{n}}={{\left[ \left( a-b \right)+b \right]}^{n}}-{{b}^{n}}
By using binomial theorem, we get:
anbn=nCk(ab)kbnk{{a}^{n}}-{{b}^{n}}=\sum{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}}
Putting this left-hand side of equation (i) we get:
anbn=(k=0nnCk(ab)kbnkbn){{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}-{{b}^{n}}} \right)
at k = 0 you can see a term bn{{b}^{n}} in summation which gets cancelled, and then all the remaining terms are divisible by a – b.
So, by taking (a – b) common from expression we get:
anbn=(ab)(nC1bn1+........+nCn(ab)n1){{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)
So, we can say anbn{{a}^{n}}-{{b}^{n}} is divisible by a – b.
If we assume:
a=xa=x , b = -1
By substituting values of a, b in statement we get
xn(1)n{{x}^{n}}-{{\left( -1 \right)}^{n}} is divisible by x(1)x-\left( -1 \right)
By reframing it we get
x+1x+1 is a factor of xn(1)n{{x}^{n}}-{{\left( -1 \right)}^{n}}
Expression asked in the question:
x+1x+1 is a factor of xn+1{{x}^{n}}+1
So, this is true if n is an odd integer.
Option (a) is correct.

Note: Be careful, while using anbn{{a}^{n}}-{{b}^{n}} .If you don’t observe that bn{{b}^{n}}is cancelled you might not end up proving a – b is factor. Mathematical induction is the easy way to solve this type of problem.