Solveeit Logo

Question

Question: $\left[-\frac{1}{Sinh^{2}a} + \frac{1}{Sinh^{4}a} - \frac{1}{2} \right]$...

[1Sinh2a+1Sinh4a12]\left[-\frac{1}{Sinh^{2}a} + \frac{1}{Sinh^{4}a} - \frac{1}{2} \right]

Answer

Coth4a3Coth2a+32\text{Coth}^4 a - 3\text{Coth}^2 a + \frac{3}{2}

Explanation

Solution

To simplify the given expression [1Sinh2a+1Sinh4a12]\left[-\frac{1}{\text{Sinh}^{2}a} + \frac{1}{\text{Sinh}^{4}a} - \frac{1}{2} \right], we can use the fundamental hyperbolic identity.

The identity we will use is: Coth2aCosech2a=1\text{Coth}^2 a - \text{Cosech}^2 a = 1

Since Cosech2a=1Sinh2a\text{Cosech}^2 a = \frac{1}{\text{Sinh}^2 a}, we can write: Coth2a1Sinh2a=1\text{Coth}^2 a - \frac{1}{\text{Sinh}^2 a} = 1

From this, we can express 1Sinh2a\frac{1}{\text{Sinh}^2 a} in terms of Coth2a\text{Coth}^2 a: 1Sinh2a=Coth2a1\frac{1}{\text{Sinh}^2 a} = \text{Coth}^2 a - 1

Let's substitute x=1Sinh2ax = \frac{1}{\text{Sinh}^2 a} into the given expression. The expression becomes: x2x12x^2 - x - \frac{1}{2}

Now, substitute x=Coth2a1x = \text{Coth}^2 a - 1 into this quadratic expression: (Coth2a1)2(Coth2a1)12(\text{Coth}^2 a - 1)^2 - (\text{Coth}^2 a - 1) - \frac{1}{2}

Expand the terms: =(Coth4a2Coth2a+1)(Coth2a1)12= (\text{Coth}^4 a - 2\text{Coth}^2 a + 1) - (\text{Coth}^2 a - 1) - \frac{1}{2} =Coth4a2Coth2a+1Coth2a+112= \text{Coth}^4 a - 2\text{Coth}^2 a + 1 - \text{Coth}^2 a + 1 - \frac{1}{2}

Combine like terms: =Coth4a(2Coth2a+Coth2a)+(1+112)= \text{Coth}^4 a - (2\text{Coth}^2 a + \text{Coth}^2 a) + (1 + 1 - \frac{1}{2}) =Coth4a3Coth2a+(212)= \text{Coth}^4 a - 3\text{Coth}^2 a + (2 - \frac{1}{2}) =Coth4a3Coth2a+412= \text{Coth}^4 a - 3\text{Coth}^2 a + \frac{4-1}{2} =Coth4a3Coth2a+32= \text{Coth}^4 a - 3\text{Coth}^2 a + \frac{3}{2}

This is the simplified form of the expression.