Solveeit Logo

Question

Question: \[\left( \frac{1 + \sin\theta + i\cos\theta}{1 + \sin\theta - i\cos\theta} \right)^{n} =\]...

(1+sinθ+icosθ1+sinθicosθ)n=\left( \frac{1 + \sin\theta + i\cos\theta}{1 + \sin\theta - i\cos\theta} \right)^{n} =

A

cos(nπ2nθ)+isin(nπ2nθ)\cos\left( \frac{n\pi}{2} - n\theta \right) + i\sin\left( \frac{n\pi}{2} - n\theta \right)

B

cos(nπ2+nθ)+isin(nπ2+nθ)\cos\left( \frac{n\pi}{2} + n\theta \right) + i\sin\left( \frac{n\pi}{2} + n\theta \right)

C

sin(nπ2nθ)+icos(nπ2nθ)\sin\left( \frac{n\pi}{2} - n\theta \right) + i\cos\left( \frac{n\pi}{2} - n\theta \right)

D

cosn(nπ2+nθ)+isinn(nπ2+nθ)\cos n\left( \frac{n\pi}{2} + n\theta \right) + i\sin n\left( \frac{n\pi}{2} + n\theta \right)

Answer

cos(nπ2nθ)+isin(nπ2nθ)\cos\left( \frac{n\pi}{2} - n\theta \right) + i\sin\left( \frac{n\pi}{2} - n\theta \right)

Explanation

Solution

Sol. (1+sinθ+icosθ1+sinθicosθ)n=(1+cosα+isinα1+cosαisinα)n\left( \frac{1 + \sin\theta + i\cos\theta}{1 + \sin\theta - i\cos\theta} \right)^{n} = \left( \frac{1 + \cos\alpha + i\sin\alpha}{1 + \cos\alpha - i\sin\alpha} \right)^{n}

=(2cos2α2+2isinα2cosα22cos2α22isinα2cosα2)n=(cosα2+isinα2cosα2isinα2)n= \left( \frac { 2 \cos ^ { 2 } \frac { \alpha } { 2 } + 2 i \sin \frac { \alpha } { 2 } \cos \frac { \alpha } { 2 } } { 2 \cos ^ { 2 } \frac { \alpha } { 2 } - 2 i \sin \frac { \alpha } { 2 } \cdot \cos \frac { \alpha } { 2 } } \right) ^ { n } = \left( \frac { \cos \frac { \alpha } { 2 } + i \sin \frac { \alpha } { 2 } } { \cos \frac { \alpha } { 2 } - i \sin \frac { \alpha } { 2 } } \right) ^ { n } =[cis(α2)cis(α2)]n={cis(α2+α2)}n=cis(nα)=cisn(π2θ)=cis(nπ2θ)=cos(nπ2nθ)+isin(nπ2nθ).\mathbf{=}\left\lbrack \frac{\mathbf{cis}\left( \frac{\mathbf{\alpha}}{\mathbf{2}} \right)}{\mathbf{cis}\left( \mathbf{-}\frac{\mathbf{\alpha}}{\mathbf{2}} \right)} \right\rbrack^{\mathbf{n}}\mathbf{=}\left\{ \mathbf{cis}\left( \frac{\mathbf{\alpha}}{\mathbf{2}}\mathbf{+}\frac{\mathbf{\alpha}}{\mathbf{2}} \right) \right\}^{\mathbf{n}}\mathbf{= cis(n\alpha) = cisn}\left( \frac{\mathbf{\pi}}{\mathbf{2}}\mathbf{- \theta} \right)\mathbf{= cis}\left( \frac{\mathbf{n\pi}}{\mathbf{2}}\mathbf{- \theta} \right)\mathbf{=}\mathbf{\cos}\left( \frac{\mathbf{n\pi}}{\mathbf{2}}\mathbf{-}\mathbf{n\theta} \right)\mathbf{+ i}\mathbf{\sin}\left( \frac{\mathbf{n\pi}}{\mathbf{2}}\mathbf{-}\mathbf{n\theta} \right)\mathbf{.}