Question
Question: \[\left( \frac{1 + \sin\theta + i\cos\theta}{1 + \sin\theta - i\cos\theta} \right)^{n} =\]...
(1+sinθ−icosθ1+sinθ+icosθ)n=
A
cos(2nπ−nθ)+isin(2nπ−nθ)
B
cos(2nπ+nθ)+isin(2nπ+nθ)
C
sin(2nπ−nθ)+icos(2nπ−nθ)
D
cosn(2nπ+nθ)+isinn(2nπ+nθ)
Answer
cos(2nπ−nθ)+isin(2nπ−nθ)
Explanation
Solution
Sol. (1+sinθ−icosθ1+sinθ+icosθ)n=(1+cosα−isinα1+cosα+isinα)n
=(2cos22α−2isin2α⋅cos2α2cos22α+2isin2αcos2α)n=(cos2α−isin2αcos2α+isin2α)n =[cis(−2α)cis(2α)]n={cis(2α+2α)}n=cis(nα)=cisn(2π−θ)=cis(2nπ−θ)=cos(2nπ−nθ)+isin(2nπ−nθ).