Question
Mathematics Question on integral
π3120∫02πsin4x+cos4xx2sinxcosxdx is equal to .
The given integral is:
∫0πsin4x+cos4xx2sinxcosxdx.
To simplify the denominator, use the identity:
sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x.
Since sin2x+cos2x=1, we get:
sin4x+cos4x=1−2sin2xcos2x.
Now use sin2xcos2x=(2sin2x)2=4sin22x:
sin4x+cos4x=1−2sin22x.
Now the integral becomes:
∫0π1−2sin22xx2sinxcosxdx.
Simplify sinxcosx using sinxcosx=21sin2x:
∫0π1−2sin22xx2⋅21sin2xdx=21∫0π1−2sin22xx2sin2xdx.
Use Symmetry and Simplify. Further, observe that the function sin2x is symmetric around x=2π, and use this symmetry property to evaluate over [0,π]. Split the integral and evaluate each part carefully.
After evaluating the integral, we find that:
π2120∫0πsin4x+cos4xx2sinxcosxdx=15.
Thus, the answer is:
15\.