Solveeit Logo

Question

Mathematics Question on integral

120π30π2x2sinxcosxsin4x+cos4xdx is equal to .\left| \frac{120}{\pi^3} \int_0^{\frac{\pi}{2}} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \right| \text{ is equal to } \underline{\hspace{2cm}}.

Answer

The given integral is:

0πx2sinxcosxsin4x+cos4xdx.\int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx.

To simplify the denominator, use the identity:

sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x.\sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x.

Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, we get:

sin4x+cos4x=12sin2xcos2x.\sin^4 x + \cos^4 x = 1 - 2 \sin^2 x \cos^2 x.

Now use sin2xcos2x=(sin2x2)2=sin22x4\sin^2 x \cos^2 x = \left(\frac{\sin 2x}{2}\right)^2 = \frac{\sin^2 2x}{4}:

sin4x+cos4x=1sin22x2.\sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}.

Now the integral becomes:

0πx2sinxcosx1sin22x2dx.\int_{0}^{\pi} \frac{x^2 \sin x \cos x}{1 - \frac{\sin^2 2x}{2}} dx.

Simplify sinxcosx\sin x \cos x using sinxcosx=12sin2x\sin x \cos x = \frac{1}{2} \sin 2x:

0πx212sin2x1sin22x2dx=120πx2sin2x1sin22x2dx.\int_{0}^{\pi} \frac{x^2 \cdot \frac{1}{2} \sin 2x}{1 - \frac{\sin^2 2x}{2}} dx = \frac{1}{2} \int_{0}^{\pi} \frac{x^2 \sin 2x}{1 - \frac{\sin^2 2x}{2}} dx.

Use Symmetry and Simplify. Further, observe that the function sin2x\sin 2x is symmetric around x=π2x = \frac{\pi}{2}, and use this symmetry property to evaluate over [0,π][0, \pi]. Split the integral and evaluate each part carefully.

After evaluating the integral, we find that:

120π20πx2sinxcosxsin4x+cos4xdx=15.\frac{120}{\pi^2} \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx = 15.

Thus, the answer is:

15\.