Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

(1+cos(π12)+isin(π12)1+cos(π12)isin(π12))72\left(\frac{1+\cos\left(\frac{\pi}{12}\right) + i \sin\left(\frac{\pi}{12}\right)}{1+\cos \left(\frac{\pi}{12}\right) - i \sin\left(\frac{\pi}{12}\right)}\right)^{72} is equal to

A

0

B

-1

C

1

D

44563

Answer

1

Explanation

Solution

Let z=(1+cosπ12+isinπ121+cosπ12isinπ12)72z=\left(\frac{1+\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}}{1+\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}}\right)^{72}
=(2cos2π24+2isinπ24cosπ242cos2π242isinπ24cosπ24)72=\left(\frac{2 \cos ^{2} \frac{\pi}{24}+2 i \sin \frac{\pi}{24} \cos \frac{\pi}{24}}{2 \cos ^{2} \frac{\pi}{24}-2 i \sin \frac{\pi}{24} \cos \frac{\pi}{24}}\right)^{72}
=(cosπ24+isinπ24cosπ24isinπ24)72=\left(\frac{\cos \frac{\pi}{24}+i \sin \frac{\pi}{24}}{\cos \frac{\pi}{24}-i \sin \frac{\pi}{24}}\right)^{72}
=cos72π24+isin72π24cos72π24isin72π24=\frac{\cos \frac{72 \pi}{24}+i \sin \frac{72 \pi}{24}}{\cos \frac{72 \pi}{24}-i \sin \frac{72 \pi}{24}}
[(cosθ+isinθ)n=cosnθ+isinnθ]\left[\because(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta\right]
=cos3π+isin3πcos3πisin3π=\frac{\cos 3 \pi+i \sin 3 \pi}{\cos 3 \pi-i \sin 3 \pi}
=1+010=\frac{-1+0}{-1-0}
=1=1