Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

(112i+31+i)(3+4i24i)\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right) is equal to :

A

12+92i\frac{1}{2}+\frac{9}{2}i

B

1292i\frac{1}{2}-\frac{9}{2}i

C

1494i\frac{1}{4}-\frac{9}{4}i

D

14+94i\frac{1}{4}+\frac{9}{4}i

Answer

14+94i\frac{1}{4}+\frac{9}{4}i

Explanation

Solution

Let z=(112i+21+i)(3+4i24i)z = \left(\frac{1}{1-2i} + \frac{2}{1+i}\right) \left(\frac{3+4i}{2-4i}\right) =[1+i+36i(12i)(1+i)][3+4i24i]= \left[\frac{1+i+3-6i}{\left(1-2i\right)\left(1+i\right)}\right] \left[\frac{3+4i}{2-4i}\right] =[45i3i][3+4i24i]=[32+i214i]= \left[\frac{4-5i}{3-i}\right]\left[\frac{3+4i}{2-4i}\right] = \left[\frac{32+i}{2-14i}\right] =32+i214i×2+14i2+14i=64+448i+2i144+196= \frac{32+i}{2-14i}\times\frac{2+14i}{2+14i} = \frac{64+448i+2i-14}{4+196} =50+450i200=14+94i= \frac{50+450i}{200} = \frac{1}{4} + \frac{9}{4}i