Question
Question: \[\left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \righ...
\left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant K, then the value of K is
A. 1+cos2α
B. 1+sin2α
C. 2+sin2α
D. 2+cos2α
Solution
We need to find the maximum of the value. For that first we are going to solve\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\} and then we can determine using the discriminant by forming a quadratic equation. On solving the value ofb2−4ac⩾0, we will be able to find the K value in\left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant K.
Complete step-by-step answer:
Given \left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant K
A modulus function is a function which gives the absolute value of a number or variable. The plotting of such graphs is also an easy method where the domain will be all values of input say x (all real numbers) and range will be values of function (y= f(x) = all positive real numbers and 0).
We need to find the maximum of the above given equation.
Let u=\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}
We say that a function f(x) has a relative maximum value at x = a, if f(a) is greater than any value immediately preceding or following. We call it a “relative” maximum because other values of the function may in fact be greater.
⇒u=cosθsinθ+cosθsin2θ+sin2α
⇒u−cosθsinθ=cosθsin2θ+sin2α
Squaring on both sides
⇒(u−cosθsinθ)2=(cosθsin2θ+sin2α)2
⇒(u−cosθsinθ)2=cos2θ(sin2θ+sin2α)
⇒u2+sin2θcos2θ−2usinθcosθ=cos2θsin2θ+cos2θsin2α
⇒u2−2usinθcosθ=cos2θsin2α
Divide the entire equation on both sides withcos2θ
⇒cos2θu2−cos2θ2usinθcosθ=cos2θcos2θsin2α
⇒cos2θu2−cosθ2usinθ=sin2α
⇒u2sec2θ−2utanθ=sin2α
We know thatsec2θ=1+tan2θ
⇒u2(1+tan2θ)−2utanθ=sin2α
⇒u2+u2tan2θ−2utanθ−sin2α=0
We can rewrite this equation as
⇒u2tan2θ−2utanθ+u2−sin2α=0
Here tanθ is real
Considering the above one as equation and comparing it withax2+bx+c=0
Therefore, a= u2
And b= −2u
And c= u2−sin2α
Quadratic formula: x=2a−b±b2−4ac. When the Discriminant b2−4acis: positive, there are 2 real solutions.
We know that D⩾0
b2−4ac⩾0
⇒(−2u)2−4×u2×(u2−sin2α)⩾0
⇒4u2−4u2(u2−sin2α)⩾0
⇒4u2(1−u2+sin2α)⩾0
⇒1−u2+sin2α⩾0
⇒u2⩽1+sin2α
Therefore, \left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant \sqrt {1 + si{n^2}\alpha }
Note: We can solve the above problem using Cauchy Schwarz Inequality. It is also Cauchy-Bunyakovsky-Schwarz inequality, a useful inequality encountered in many different settings, such as linear algebra, analysis, probability theory, vector algebra and other areas. Therefore, on using this inequality, we get(sin2x+cos2x).[cos2x+sin2x+sin2α] ⩾(sinx.cosx+cosx.sin2x+sin2α)2. So we gety2⩽(1+sin2α)⇒∣y∣⩽1+sin2α.