Solveeit Logo

Question

Question: \[\left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \righ...

\left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant K, then the value of K is
A. 1+cos2α\sqrt {1 + {{\cos }^2}\alpha }
B. 1+sin2α\sqrt {1 + {{\sin }^2}\alpha }
C. 2+sin2α\sqrt {2 + {{\sin }^2}\alpha }
D. 2+cos2α\sqrt {2 + {{\cos }^2}\alpha }

Explanation

Solution

We need to find the maximum of the value. For that first we are going to solve\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\} and then we can determine using the discriminant by forming a quadratic equation. On solving the value ofb24ac0{b^2} - 4ac \geqslant 0, we will be able to find the K value in\left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant K.

Complete step-by-step answer:
Given \left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant K
A modulus function is a function which gives the absolute value of a number or variable. The plotting of such graphs is also an easy method where the domain will be all values of input say x (all real numbers) and range will be values of function (y= f(x) = all positive real numbers and 0).
We need to find the maximum of the above given equation.
Let u=\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}
We say that a function f(x) has a relative maximum value at x = a, if f(a) is greater than any value immediately preceding or following. We call it a “relative” maximum because other values of the function may in fact be greater.
u=cosθsinθ+cosθsin2θ+sin2α\Rightarrow u = \cos \theta sin\theta + \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha }
ucosθsinθ=cosθsin2θ+sin2α\Rightarrow u - \cos \theta sin\theta = \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha }
Squaring on both sides
(ucosθsinθ)2=(cosθsin2θ+sin2α)2\Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = \left( {\cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right){ ^2}
(ucosθsinθ)2=cos2θ(sin2θ+sin2α)\Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = {\cos ^2}\theta \left( {{{\sin }^2}\theta + {{\sin }^2}\alpha } \right)
u2+sin2θcos2θ2usinθcosθ=cos2θsin2θ+cos2θsin2α\Rightarrow {u^2} + {\sin ^2}\theta {\cos ^2}\theta - 2u\sin \theta \cos \theta = {\cos ^2}\theta si{n^2}\theta + {\cos ^2}\theta {\sin ^2}\alpha
u22usinθcosθ=cos2θsin2α\Rightarrow {u^2} - 2u\sin \theta \cos \theta = {\cos ^2}\theta {\sin ^2}\alpha
Divide the entire equation on both sides withcos2θ{\cos ^2}\theta
u2cos2θ2usinθcosθcos2θ=cos2θsin2αcos2θ\Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} = \dfrac{{{{\cos }^2}\theta {{\sin }^2}\alpha }}{{{{\cos }^2}\theta }}
u2cos2θ2usinθcosθ=sin2α\Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta }}{{\cos \theta }} = si{n^2}\alpha
u2sec2θ2utanθ=sin2α\Rightarrow {u^2}{\sec ^2}\theta - 2u\tan \theta = si{n^2}\alpha
We know thatsec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta
u2(1+tan2θ)2utanθ=sin2α\Rightarrow {u^2}\left( {1 + {{\tan }^2}\theta } \right) - 2u\tan \theta = si{n^2}\alpha
u2+u2tan2θ2utanθsin2α=0\Rightarrow {u^2} + {u^2}{\tan ^2}\theta - 2u\tan \theta - si{n^2}\alpha = 0
We can rewrite this equation as
u2tan2θ2utanθ+u2sin2α=0\Rightarrow {u^2}{\tan ^2}\theta - 2u\tan \theta + {u^2} - si{n^2}\alpha = 0
Here tanθ\tan \theta is real
Considering the above one as equation and comparing it withax2+bx+c=0a{x^2} + bx + c = 0
Therefore, a= u2{u^2}
And b= 2u - 2u
And c= u2sin2α{u^2} - si{n^2}\alpha
Quadratic formula: x=b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}. When the Discriminant b24ac{b^2} - 4acis: positive, there are 2 real solutions.
We know that D0D \geqslant 0
b24ac0{b^2} - 4ac \geqslant 0
(2u)24×u2×(u2sin2α)0\Rightarrow {\left( { - 2u} \right)^2} - 4 \times {u^2} \times \left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0
4u24u2(u2sin2α)0\Rightarrow 4{u^2} - 4{u^2}\left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0
4u2(1u2+sin2α)0\Rightarrow 4{u^2}\left( {1 - {u^2} + si{n^2}\alpha } \right) \geqslant 0
1u2+sin2α0\Rightarrow 1 - {u^2} + si{n^2}\alpha \geqslant 0
u21+sin2α\Rightarrow {u^2} \leqslant 1 + si{n^2}\alpha

Therefore, \left| {\cos \theta \left\\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\\}} \right| \leqslant \sqrt {1 + si{n^2}\alpha }

Note: We can solve the above problem using Cauchy Schwarz Inequality. It is also Cauchy-Bunyakovsky-Schwarz inequality, a useful inequality encountered in many different settings, such as linear algebra, analysis, probability theory, vector algebra and other areas. Therefore, on using this inequality, we get(sin2x+cos2x).[cos2x+sin2x+sin2α]({\sin ^2}x + {\cos ^2}x).\left[ {{{\cos }^2}x + {{\sin }^2}x + {{\sin }^2}\alpha } \right] (sinx.cosx+cosx.sin2x+sin2α)2 \geqslant {\left( {\sin x.\cos x + \cos x.\sqrt {{{\sin }^2}x + {{\sin }^2}\alpha } } \right)^2}. So we gety2(1+sin2α)y1+sin2α{y^2} \leqslant \left( {1 + {{\sin }^2}\alpha } \right) \Rightarrow \left| y \right| \leqslant \sqrt {1 + {{\sin }^2}\alpha } .