Solveeit Logo

Question

Question: \(\left| \begin{matrix} x + 1 & x + 2 & x + \lambda \\ x + 2 & x + 3 & x + \mu \\ x + 3 & x + 4 & x ...

x+1x+2x+λx+2x+3x+μx+3x+4x+ν\left| \begin{matrix} x + 1 & x + 2 & x + \lambda \\ x + 2 & x + 3 & x + \mu \\ x + 3 & x + 4 & x + \nu \end{matrix} \right| =0, λ,μ,ν\lambda,\mu,\nu are in A. P. is

A

An equation whose all roots are real

B

An identity in x

C

An equation with only one real root

D

None of these

Answer

An identity in x

Explanation

Solution

Let ∆= x+1x+2x+λx+2x+3x+μx+3x+4x+ν\left| \begin{matrix} x + 1 & x + 2 & x + \lambda \\ x + 2 & x + 3 & x + \mu \\ x + 3 & x + 4 & x + \nu \end{matrix} \right|

Applying R2R212(R1+R3)R_{2} \rightarrow R_{2} - \frac{1}{2}\left( R_{1} + R_{3} \right)

= x+1x+2x+λ00μλ+ν2x+3x+4x+ν\left| \begin{matrix} x + 1 & x + 2 & x + \lambda \\ 0 & 0 & \mu - \frac{\lambda + \nu}{2} \\ x + 3 & x + 4 & x + \nu \end{matrix} \right|

}{= \left( \mu - \frac{\lambda + \nu}{2} \right)( - 2) = 0}$$ ⇒ 0 = 0 $(\because\lambda,\mu,\nu areinA.P.)$ Hence ∆ is an identify in x.