Question
Question: \[\left| \begin{matrix} x + 1 & x + 2 & x + 4 \\ x + 3 & x + 5 & x + 8 \\ x + 7 & x + 10 & x + 14 \e...
x + 1 & x + 2 & x + 4 \\
x + 3 & x + 5 & x + 8 \\
x + 7 & x + 10 & x + 14
\end{matrix} \right| =$$
A
2
B
– 2
C
x2−2
D
None of these
Answer
– 2
Explanation
Solution
$\Delta = \left| \begin{matrix}
- 1 & - 2 & x + 4 \
- 2 & - 3 & x + 8 \
- 3 & - 4 & x + 14 \end{matrix} \right|,byC_{1} \rightarrow C_{1} - C_{2} $$C_{2} \rightarrow C_{2} - C_{3} $
= A3=A2A=253364121112121010, by C2→C2−C1 $$C_{3} \rightarrow C_{3} + 4C_{1}
= - ( - x - 2 + x) + 1.( - 2x - 4 + 3x) + x(2 - 3)
= 2+x−4−x=−2.
Trick : Put C2. Then 24836115915=−2
Note : Since there is a option “None of these”, therefore we should check for one more different value of x. Put x=−1.
0 & 1 & 3 \\ 2 & 4 & 7 \\ 6 & 9 & 13 \end{matrix} \right| = - 1(26 - 42) + 3(18 - 24) = - 2$$ Therefore answer is (2).