Solveeit Logo

Question

Question: \[\left| \begin{matrix} x + 1 & x + 2 & x + 4 \\ x + 3 & x + 5 & x + 8 \\ x + 7 & x + 10 & x + 14 \e...

x + 1 & x + 2 & x + 4 \\ x + 3 & x + 5 & x + 8 \\ x + 7 & x + 10 & x + 14 \end{matrix} \right| =$$
A

2

B

– 2

C

x22x^{2} - 2

D

None of these

Answer

– 2

Explanation

Solution

$\Delta = \left| \begin{matrix}

  • 1 & - 2 & x + 4 \
  • 2 & - 3 & x + 8 \
  • 3 & - 4 & x + 14 \end{matrix} \right|,bybyC_{1} \rightarrow C_{1} - C_{2} $$C_{2} \rightarrow C_{2} - C_{3} $

= A3=A2A=[231562341][110121210]A^{3} = A^{2}A = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 6 & 2 \\ 3 & 4 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}, by C2C2C1C_{2} \rightarrow C_{2} - C_{1} $$C_{3} \rightarrow C_{3} + 4C_{1}

= - ( - x - 2 + x) + 1.( - 2x - 4 + 3x) + x(2 - 3)

= 2+x4x=22 + x - 4 - x = - 2.

Trick : Put C2C_{2}. Then 23546981115=2\left| \begin{matrix} 2 & 3 & 5 \\ 4 & 6 & 9 \\ 8 & 11 & 15 \end{matrix} \right| = - 2

Note : Since there is a option “None of these”, therefore we should check for one more different value of x. Put x=1x = - 1.

0 & 1 & 3 \\ 2 & 4 & 7 \\ 6 & 9 & 13 \end{matrix} \right| = - 1(26 - 42) + 3(18 - 24) = - 2$$ Therefore answer is (2).