Solveeit Logo

Question

Question: \(\left| \begin{matrix} \log_{3}512 & \log_{4}3 \\ \log_{3}8 & \log_{4}9 \end{matrix} \right|\)× \(\...

log3512log43log38log49\left| \begin{matrix} \log_{3}512 & \log_{4}3 \\ \log_{3}8 & \log_{4}9 \end{matrix} \right|× log23log83log34log34\left| \begin{matrix} \log_{2}3 & \log_{8}3 \\ \log_{3}4 & \log_{3}4 \end{matrix} \right|=

A

7

B

10

C

13

D

17

Answer

10

Explanation

Solution

(log3512.log49log43.log38)\left( \log_{3}512.\log_{4}9 - \log_{4}3.\log_{3}8 \right) ×(log23.log34log83.log34)\left( \log_{2}3.\log_{3}4 - \log_{8}3.\log_{3}4 \right)

= (932)\left( 9 - \frac{3}{2} \right) × (223)\left( 2 - \frac{2}{3} \right)= 152\frac{15}{2}× 43\frac{4}{3}= 10