Solveeit Logo

Question

Question: \(\left| \begin{matrix} bc & bc^{'} + b^{'}c & b^{'}c^{'} \\ ca & ca^{'} + c^{'}a & c^{'}a^{'} \\ ab...

bcbc+bcbccaca+cacaabab+abab\left| \begin{matrix} bc & bc^{'} + b^{'}c & b^{'}c^{'} \\ ca & ca^{'} + c^{'}a & c^{'}a^{'} \\ ab & ab^{'} + a^{'}b & a^{'}b^{'} \end{matrix} \right| is equal to.

A

(abab)(bcbc)(caca)(ab - a^{'}b^{'})(bc - b^{'}c^{'})(ca - c^{'}a^{'})

B

(ab+ab)(bc+bc)(ca+ca)(ab + a^{'}b^{'})(bc + b^{'}c^{'})(ca + c^{'}a^{'})

C

(abab)(bcbc)(caca)(ab^{'} - a^{'}b)(bc^{'} - b^{'}c)(ca^{'} - c^{'}a)

D

(ab+ab)(bc+bc)(ca+ca)(ab^{'} + a^{'}b)(bc^{'} + b^{'}c)(ca^{'} + c^{'}a)

Answer

(abab)(bcbc)(caca)(ab^{'} - a^{'}b)(bc^{'} - b^{'}c)(ca^{'} - c^{'}a)

Explanation

Solution

Sol. Trick : Put a=1,b=1,c=0a = 1,b = - 1,c = 0

a=2,b=2,c=1\mathbf{a}^{\mathbf{'}}\mathbf{= 2,}\mathbf{b}^{\mathbf{'}}\mathbf{= 2,}\mathbf{c}^{\mathbf{'}}\mathbf{= 1}

Then the determinant is $\left| \begin{matrix} 0 & - 1 & 2 \ 0 & 1 & 2 \

  • 1 & 0 & 4 \end{matrix} \right| = 4$

Option (3) also gives the same value.