Question
Question: \(\left| \begin{matrix} bc & bc^{'} + b^{'}c & b^{'}c^{'} \\ ca & ca^{'} + c^{'}a & c^{'}a^{'} \\ ab...
bccaabbc′+b′cca′+c′aab′+a′bb′c′c′a′a′b′ is equal to.
A
(ab−a′b′)(bc−b′c′)(ca−c′a′)
B
(ab+a′b′)(bc+b′c′)(ca+c′a′)
C
(ab′−a′b)(bc′−b′c)(ca′−c′a)
D
(ab′+a′b)(bc′+b′c)(ca′+c′a)
Answer
(ab′−a′b)(bc′−b′c)(ca′−c′a)
Explanation
Solution
Sol. Trick : Put a=1,b=−1,c=0
a′=2,b′=2,c′=1
Then the determinant is $\left| \begin{matrix} 0 & - 1 & 2 \ 0 & 1 & 2 \
- 1 & 0 & 4 \end{matrix} \right| = 4$
Option (3) also gives the same value.