Question
Question: \[\left| \begin{matrix} b^{2} + c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2} + a^{2} & b^{2} \\ c^{2} & c^...
b^{2} + c^{2} & a^{2} & a^{2} \\
b^{2} & c^{2} + a^{2} & b^{2} \\
c^{2} & c^{2} & a^{2} + b^{2}
\end{matrix} \right| =$$
A
abc
B
4abc
C
4a2b2c2
D
a2b2c2
Answer
4a2b2c2
Explanation
Solution
Δ=b2+c2b2c2a2c2+a2c2a2b2a2+b2
=−20b2c2c2c2+a2c2b2b2a2+b2,by R1→R1−(R2+R3)
= −20b2c2c2a20b20a2, by R2→R2−R1 $$R_{3} \rightarrow R_{3} - R_{1}
= −2{−c2(b2a2)+b2(−c2a2)}=4a2b2c2.
Trick: Put α so that the option give different values.