Solveeit Logo

Question

Question: \[\left| \begin{matrix} b + c & a & a \\ b & c + a & b \\ c & c & a + b \end{matrix} \right| =\]...

b + c & a & a \\ b & c + a & b \\ c & c & a + b \end{matrix} \right| =$$
A

abcabc

B

2abc2abc

C

3abc3abc

D

4abc4abc

Answer

4abc4abc

Explanation

Solution

b+caabc+abcca+b=02c2bbc+abcca+b\left| \begin{matrix} b + c & a & a \\ b & c + a & b \\ c & c & a + b \end{matrix} \right| = \left| \begin{matrix} 0 & - 2c & - 2b \\ b & c + a & b \\ c & c & a + b \end{matrix} \right|

{by R1R1(R2+R3)}R_{1} \rightarrow R_{1} - (R_{2} + R_{3})\}

= 2c.b(a+bc)2b.c(bca)=4abc2c.b(a + b - c) - 2b.c(b - c - a) = 4abc.