Question
Question: \[\left| \begin{matrix} b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c \end{matrix} \ri...
b + c & a - b & a \\
c + a & b - c & b \\
a + b & c - a & c
\end{matrix} \right| =$$
A
a3+b3+c3−3abc
B
3abc−a3−b3−c3
C
a3+b3+c3−a2b−b2c−c2a
D
3abc−a3−b3−c3
Answer
3abc−a3−b3−c3
Explanation
Solution
Δ=2(a+b+c)c+aa+b0b−cc−aa+b+cbc
by R1→R1+R2+R3
2 & 0 & 1 \\ c + a & b - c & b \\ a + b & c - a & c \end{matrix} \right|$$ On expanding, $- (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$ = $= a_{1}^{2}(b_{2}c_{3} - b_{3}c_{2}) + a_{1}b_{1}( - c_{3}a_{2} + a_{3}c_{2})$. **Trick :** Put $a = 1,b = 2,c = 3$ and check it.