Solveeit Logo

Question

Question: \[\left| \begin{matrix} a_{1} & ma_{1} & b_{1} \\ a_{2} & ma_{2} & b_{2} \\ a_{3} & ma_{3} & b_{3} \...

a_{1} & ma_{1} & b_{1} \\ a_{2} & ma_{2} & b_{2} \\ a_{3} & ma_{3} & b_{3} \end{matrix} \right| =$$
A

0

B

ma1a2a3ma_{1}a_{2}a_{3}

C

ma1a2b3ma_{1}a_{2}b_{3}

D

mb1a2a3mb_{1}a_{2}a_{3}

Answer

0

Explanation

Solution

a1ma1b1a2ma2b2a3ma3b3=ma1a1b1a2a2b2a3a3b3=0\left| \begin{matrix} a_{1} & ma_{1} & b_{1} \\ a_{2} & ma_{2} & b_{2} \\ a_{3} & ma_{3} & b_{3} \end{matrix} \right| = m\left| \begin{matrix} a_{1} & a_{1} & b_{1} \\ a_{2} & a_{2} & b_{2} \\ a_{3} & a_{3} & b_{3} \end{matrix} \right| = 0, {C1C2}\{\therefore C_{1} \equiv C_{2}\}.