Solveeit Logo

Question

Question: \(\left| \begin{matrix} a^{2} + x^{2} & ab & ca \\ ab & b^{2} + x^{2} & bc \\ ca & bc & c^{2} + x^{2...

a2+x2abcaabb2+x2bccabcc2+x2\left| \begin{matrix} a^{2} + x^{2} & ab & ca \\ ab & b^{2} + x^{2} & bc \\ ca & bc & c^{2} + x^{2} \end{matrix} \right| is divisor of.

A

a2a^{2}

B

b2b^{2}

C

c2c^{2}

D

x2x^{2}

Answer

x2x^{2}

Explanation

Solution

a2+x2abcaabb2+x2bccabcc2+x2\left| \begin{matrix} a^{2} + x^{2} & ab & ca \\ ab & b^{2} + x^{2} & bc \\ ca & bc & c^{2} + x^{2} \end{matrix} \right|

Multiply C1,C2,C3C_{1},C_{2},C_{3} by a,b,ca,b,c respectively and hence divide by abc

Δ=1abca(a2+x2)ab2c2aa2bb(b2+x2)bc2ca2b2cc(c2+x2)\Delta = \frac{1}{abc}\left| \begin{matrix} a(a^{2} + x^{2}) & ab^{2} & c^{2}a \\ a^{2}b & b(b^{2} + x^{2}) & bc^{2} \\ ca^{2} & b^{2}c & c(c^{2} + x^{2}) \end{matrix} \right|

Now take out a, b and c common from R1,R2R_{1},R_{2} and R3R_{3},

Δ=a2+x2b2c2a2b2+x2c2a2b2c2+x2\Delta = \left| \begin{matrix} a^{2} + x^{2} & b^{2} & c^{2} \\ a^{2} & b^{2} + x^{2} & c^{2} \\ a^{2} & b^{2} & c^{2} + x^{2} \end{matrix} \right|

Now applying C1C1+C2+C3C_{1} \rightarrow C_{1} + C_{2} + C_{3}

\Rightarrow Δ=(a2+b2+c2+x2)1b2c21b2+x2c21b2c2+x2\Delta = (a^{2} + b^{2} + c^{2} + x^{2})\left| \begin{matrix} 1 & b^{2} & c^{2} \\ 1 & b^{2} + x^{2} & c^{2} \\ 1 & b^{2} & c^{2} + x^{2} \end{matrix} \right|

Δ=x4(a2+b2+c2+x2)\Delta = x^{4}(a^{2} + b^{2} + c^{2} + x^{2})

Hence, it is divisible by x2x^{2}.