Question
Question: \[\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ (a + 1)^{2} & (b + 1)^{2} & (c + 1)^{2} \\ (a - 1)^...
a^{2} & b^{2} & c^{2} \\
(a + 1)^{2} & (b + 1)^{2} & (c + 1)^{2} \\
(a - 1)^{2} & (b - 1)^{2} & (c - 1)^{2}
\end{matrix} \right| =$$
A
4a2a1b2b1c2c1
B
3a2a1b2b1c2c1
C
2a2a1b2b1c2c1
D
None of these
Answer
4a2a1b2b1c2c1
Explanation
Solution
Apply R2−R3 and note that
(x+y)2−(x−y)2=4xy
∴ Δ=4a2a(a−1)2b2b(b−1)2c2c(c−1)2
= 4a2a1b2b1c2c1 {Applying R3−(R1−2R2)}.