Solveeit Logo

Question

Question: \[\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ (a + 1)^{2} & (b + 1)^{2} & (c + 1)^{2} \\ (a - 1)^...

a^{2} & b^{2} & c^{2} \\ (a + 1)^{2} & (b + 1)^{2} & (c + 1)^{2} \\ (a - 1)^{2} & (b - 1)^{2} & (c - 1)^{2} \end{matrix} \right| =$$
A

4a2b2c2abc1114\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1 \end{matrix} \right|

B

3a2b2c2abc1113\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1 \end{matrix} \right|

C

2a2b2c2abc1112\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1 \end{matrix} \right|

D

None of these

Answer

4a2b2c2abc1114\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1 \end{matrix} \right|

Explanation

Solution

Apply R2R3R_{2} - R_{3} and note that

(x+y)2(xy)2=4xy(x + y)^{2} - (x - y)^{2} = 4xy

\therefore Δ=4a2b2c2abc(a1)2(b1)2(c1)2\Delta = 4\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ a & b & c \\ (a - 1)^{2} & (b - 1)^{2} & (c - 1)^{2} \end{matrix} \right|

= 4a2b2c2abc1114\left| \begin{matrix} a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1 \end{matrix} \right| {Applying R3(R12R2)}R_{3} - (R_{1} - 2R_{2})\}.