Solveeit Logo

Question

Question: \(\left| \begin{matrix} a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c \end...

a+bb+cc+ab+cc+aa+bc+aa+bb+c=Kabcbcacab,\left| \begin{matrix} a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c \end{matrix} \right| = K\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \end{matrix} \right|, then K=K =

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

The determinant can be written sum of 2×2×2=82 \times 2 \times 2 = 8 determinants of which 6 are reduces to zero because of their two rows are identical. Hence proceed.