Question
Question: \[\left| \begin{matrix} a + b & a + 2b & a + 3b \\ a + 2b & a + 3b & a + 4b \\ a + 4b & a + 5b & a +...
a + b & a + 2b & a + 3b \\
a + 2b & a + 3b & a + 4b \\
a + 4b & a + 5b & a + 6b
\end{matrix} \right| =$$
A
a2+b2+c2−3abc
B
3ab
C
3a+5b
D
0
Answer
0
Explanation
Solution
a+ba+2ba+4ba+2ba+3ba+5ba+3ba+4ba+6b=a+bb2ba+2bb2ba+3bb2b = 0
R_{2} \rightarrow R_{2} - R_{1} \\ R_{3} \rightarrow R_{3} - R_{2} \end{matrix} \right\}$$ **Trick:** Putting $a = 1 = b$. The determinant will be $\left| \begin{matrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{matrix} \right| = 0$. Obviously answer is (4) **Note :** Students remember while taking the values of $a,b,c,.......$ that for there values, the options (1), (2), (3) and (4) should not be identical.