Solveeit Logo

Question

Question: \(\left| \begin{matrix} a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a \end{matrix} ...

aa+ba+2ba+2baa+ba+ba+2ba\left| \begin{matrix} a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a \end{matrix} \right| = mbn (a + b) then –

A

m = 9, n = 1

B

m = 1, n = 2

C

m = 9, n = 2

D

None

Answer

m = 9, n = 2

Explanation

Solution

D =aa+ba+2ba+2baa+ba+ba+2ba\left| \begin{matrix} a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a \end{matrix} \right|

D = 3(a + b) 1a+ba+2b1aa+b1a+2b0\left| \begin{matrix} 1 & a + b & a + 2b \\ 1 & a & a + b \\ 1 & a + 2b & 0 \end{matrix} \right| c1 ® c1 + c2 + c3

= 3(a + b) 1a+ba+2b0bb0b2b\left| \begin{matrix} 1 & a + b & a + 2b \\ 0 & –b & –b \\ 0 & b & –2b \end{matrix} \right|

= 9b2(a + b) = mbn(a + b)

m = 9, n = 2