Solveeit Logo

Question

Question: \(\left| \begin{matrix} a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a \end{matrix} ...

aa+ba+2ba+2baa+ba+ba+2ba\left| \begin{matrix} a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a \end{matrix} \right| = mbn(a + b) Then :

A

m = 9, n = 1

B

m = 1, n = 2

C

m = 9, n = 2

D

None

Answer

m = 9, n = 2

Explanation

Solution

∆= aa+ba+2ba+2baa+ba+ba+2ba\left| \begin{matrix} a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a \end{matrix} \right|

= 3(a + b) 1a+ba+2b1aa+b1a+2ba\left| \begin{matrix} 1 & a + b & a + 2b \\ 1 & a & a + b \\ 1 & a + 2b & a \end{matrix} \right| C1→C1+C2+ C3

= 3(a + b) 1a+ba+2b0bb0b2b\left| \begin{matrix} 1 & a + b & a + 2b \\ 0 & –b & –b \\ 0 & b & –2b \end{matrix} \right|

= 9b2 (a + b)

= mbn (a + b)

∴ m = 9, n = 2