Question
Question: \[\left| \begin{matrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{matri...
a - b - c & 2a & 2a \\
2b & b - c - a & 2b \\
2c & 2c & c - a - b
\end{matrix} \right| =$$
A
(a+b+c)2
B
(a+b+c)3
C
(a+b+c)(ab+bc+ca)
D
None of these
Answer
(a+b+c)3
Explanation
Solution
a−b−c2b2c2ab−c−a2c2a2bc−a−b
= $\left| \begin{matrix}
- \Sigma a & 0 & 2a \ \Sigma a & - \Sigma a & 2b \ 0 & \Sigma a & c - a - b \end{matrix} \right|,\left( \begin{aligned} & C_{1} \rightarrow C_{1} - C_{2} \ & C_{2} \rightarrow C_{2} - C_{3} \end{aligned} \right)$
= $(\Sigma a)^{2}\left| \begin{matrix}
- 1 & 0 & 2a \ 1 & - 1 & 2b \ 1 & 1 & c - a - b \end{matrix} \right| = (\Sigma a)^{3}$, (on expansion)
= (a+b+c)3.