Solveeit Logo

Question

Question: \[\left| \begin{matrix} 1/a & a^{2} & bc \\ 1/b & b^{2} & ca \\ 1/c & c^{2} & ab \end{matrix} \right...

1/a & a^{2} & bc \\ 1/b & b^{2} & ca \\ 1/c & c^{2} & ab \end{matrix} \right| =$$
A

abcabc

B

1/abc1/abc

C

ab+bc+caab + bc + ca

D

0

Answer

0

Explanation

Solution

1/aa2bc1/bb2ca1/cc2ab=1abc1a3abc1b3abc1c3abc=abcabc1a311b311c31=0\left| \begin{matrix} 1/a & a^{2} & bc \\ 1/b & b^{2} & ca \\ 1/c & c^{2} & ab \end{matrix} \right| = \frac{1}{abc}\left| \begin{matrix} 1 & a^{3} & abc \\ 1 & b^{3} & abc \\ 1 & c^{3} & abc \end{matrix} \right| = \frac{abc}{abc}\left| \begin{matrix} 1 & a^{3} & 1 \\ 1 & b^{3} & 1 \\ 1 & c^{3} & 1 \end{matrix} \right| = 0