Question
Question: \[\left| \begin{matrix} 1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z \end{matrix} \right| =\]...
1 + x & 1 & 1 \\
1 & 1 + y & 1 \\
1 & 1 & 1 + z
\end{matrix} \right| =$$
A
xyz(1+x1+y1+z1)
B
xyz
C
1+x1+y1+z1
D
x1+y1+z1
Answer
xyz(1+x1+y1+z1)
Explanation
Solution
Δ=xyz1+x1y1z1x11+y1z1x1y11+z1 =xyz(1+x1+y1+z1) 1y1z111+y1z11y11+z1 (byR1→R1+R2+R3)
=xyz(1+x1+y1+z1) 1y1z1010001(byC2→C2−C1andC3→C3−C1)
=xyz(1+x1+y1+z1) 1001 =xyz(1+x1+y1+z1)
Trick : Put x=1,y=2 and z=3, then
2 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{matrix} \right| = 2(11) - 1(3) + 1(1 - 3) = 17$$ option (1) gives $1 \times 2 \times 3\left( 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} \right) = 17$