Solveeit Logo

Question

Question: \[\left| \begin{matrix} 1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z \end{matrix} \right| =\]...

1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z \end{matrix} \right| =$$
A

xyz(1+1x+1y+1z)xyz\left( 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right)

B

xyzxyz

C

1+1x+1y+1z1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}

D

1x+1y+1z\frac{1}{x} + \frac{1}{y} + \frac{1}{z}

Answer

xyz(1+1x+1y+1z)xyz\left( 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right)

Explanation

Solution

{C1C2}\{\therefore C_{1} \equiv C_{2}\}

= xyz(1+1x+1y+1z)xyz\left( 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) 1111y1+1y1y1z1z1+1z\left| \begin{matrix} 1 & 1 & 1 \\ \frac{1}{y} & 1 + \frac{1}{y} & \frac{1}{y} \\ \frac{1}{z} & \frac{1}{z} & 1 + \frac{1}{z} \end{matrix} \right|,

by R1R1+R2+R3R_{1} \rightarrow R_{1} + R_{2} + R_{3}

=xyz(1+1x+1y+1z)x y z \left( 1 + \frac { 1 } { x } + \frac { 1 } { y } + \frac { 1 } { z } \right) 1001/y101/z01\left| \begin{matrix} 1 & 0 & 0 \\ 1/y & 1 & 0 \\ 1/z & 0 & 1 \end{matrix} \right|, by C2C2C1C_{2} \rightarrow C_{2} - C_{1} $$C_{3} \rightarrow C_{3} - C_{1}

= xyz(1+1x+1y+1z)xyz\left( 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) 1001=xyz(1+1x+1y+1z)\left| \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right| = xyz\left( 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right).

Trick: Put x=1,y=2x = 1,y = 2 and z=3z = 3, then

\left| \begin{matrix} 2 & 1 & 1 \ 1 & 3 & 1 \ 1 & 1 & 4 \end{matrix} \right| = 2(11) - 1(3) + 1(1 - 3) = 17

Option (1) gives, 1×2×3(1+11+12+13)=171 \times 2 \times 3\left( 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} \right) = 17.