Question
Question: \[\left| \begin{matrix} 1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z \end{matrix} \right| =\]...
1 + x & 1 & 1 \\
1 & 1 + y & 1 \\
1 & 1 & 1 + z
\end{matrix} \right| =$$
A
xyz(1+x1+y1+z1)
B
xyz
C
1+x1+y1+z1
D
x1+y1+z1
Answer
xyz(1+x1+y1+z1)
Explanation
Solution
{∴C1≡C2}
= xyz(1+x1+y1+z1) 1y1z111+y1z11y11+z1,
by R1→R1+R2+R3
=xyz(1+x1+y1+z1) 11/y1/z010001, by C2→C2−C1 $$C_{3} \rightarrow C_{3} - C_{1}
= xyz(1+x1+y1+z1) 1001=xyz(1+x1+y1+z1).
Trick: Put x=1,y=2 and z=3, then
\left| \begin{matrix} 2 & 1 & 1 \ 1 & 3 & 1 \ 1 & 1 & 4 \end{matrix} \right| = 2(11) - 1(3) + 1(1 - 3) = 17
Option (1) gives, 1×2×3(1+11+21+31)=17.