Question
Question: \(\left| \begin{matrix} 1 + \sin^{2}\theta & \sin^{2}\theta & \sin^{2}\theta \\ \cos^{2}\theta & 1 +...
1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+4sin4θ=0 thensin4θequal to.
A
1/2
B
1
C
–1/2
D
–1
Answer
–1/2
Explanation
Solution
1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+4sin4θ=0
Using C1→C1−C2,C2→C2−C3
⇒ $\left| \begin{matrix} 1 & 0 & \sin^{2}\theta \
- 1 & 1 & \cos^{2}\theta \ 0 & - 1 & 1 + 4\sin 4\theta \end{matrix} \right| = 0$
⇒ 2(1+2sin4θ)=0⇒sin4θ=2−1.