Solveeit Logo

Question

Question: \(\left| \begin{matrix} 1 + \sin^{2}\theta & \sin^{2}\theta & \sin^{2}\theta \\ \cos^{2}\theta & 1 +...

1+sin2θsin2θsin2θcos2θ1+cos2θcos2θ4sin4θ4sin4θ1+4sin4θ=0\left| \begin{matrix} 1 + \sin^{2}\theta & \sin^{2}\theta & \sin^{2}\theta \\ \cos^{2}\theta & 1 + \cos^{2}\theta & \cos^{2}\theta \\ 4\sin 4\theta & 4\sin 4\theta & 1 + 4\sin 4\theta \end{matrix} \right| = 0 thensin4θ\sin 4\thetaequal to.

A

1/2

B

1

C

–1/2

D

–1

Answer

–1/2

Explanation

Solution

1+sin2θsin2θsin2θcos2θ1+cos2θcos2θ4sin4θ4sin4θ1+4sin4θ=0\left| \begin{matrix} 1 + \sin^{2}\theta & \sin^{2}\theta & \sin^{2}\theta \\ \cos^{2}\theta & 1 + \cos^{2}\theta & \cos^{2}\theta \\ 4\sin 4\theta & 4\sin 4\theta & 1 + 4\sin 4\theta \end{matrix} \right| = 0

Using C1C1C2,C2C2C3C_{1} \rightarrow C_{1} - C_{2},C_{2} \rightarrow C_{2} - C_{3}

⇒ $\left| \begin{matrix} 1 & 0 & \sin^{2}\theta \

  • 1 & 1 & \cos^{2}\theta \ 0 & - 1 & 1 + 4\sin 4\theta \end{matrix} \right| = 0$

2(1+2sin4θ)=0sin4θ=122(1 + 2\sin 4\theta) = 0 \Rightarrow \sin 4\theta = \frac{- 1}{2}.