Question
Question: \[\left| \begin{matrix} 1 & a & b \\ - a & 1 & c \\ - b & - c & 1 \end{matrix} \right| =\]...
1 & a & b \\
- a & 1 & c \\
- b & - c & 1
\end{matrix} \right| =$$
A
1+a2+b2+c2
B
1−a2+b2+c2
C
1+a2+b2−c2
D
1+a2−b2+c2
Answer
1+a2+b2+c2
Explanation
Solution
$\left| \begin{matrix} 1 & a & b \
- a & 1 & c \
- b & - c & 1 \end{matrix} \right| = 1(1 + c^{2}) - a( - a + bc) + b(ac + b)$
= 1+a2+b2+c2.