Question
Question: \[\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| =\]...
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{matrix} \right| =$$
A
a2+b2+c2`
B
(a+b)(b+c)(c+a)
C
(a−b)(b−c)(c−a)
D
None of these
Answer
(a−b)(b−c)(c−a)
Explanation
Solution
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{matrix} \right|$$
Applying $R_{1} \rightarrow R_{1} - R_{2}\& R_{2} \rightarrow R_{2} - R_{3}$
$= \left| \begin{matrix}
0 & a - b & a^{2} - b^{2} \\
0 & b - c & b^{2} - c^{2} \\
1 & c & c^{2}
\end{matrix} \right| = (a - b)(b - c)\left| \begin{matrix}
0 & 1 & a + b \\
0 & 1 & b + c \\
1 & c & c^{2}
\end{matrix} \right|$;
Applying $R_{1} \rightarrow R_{1} - R_{2}$
$$= (a - b)(b - c)\left| \begin{matrix}
0 & 0 & (a - c) \\
0 & 1 & b + c \\
1 & c & c^{2}
\end{matrix} \right|$$
$$= (a - b)(b - c)(a - c)\left| \begin{matrix}
0 & 0 & 1 \\
0 & 1 & b + c \\
1 & c & c^{2}
\end{matrix} \right| = (a - b)(b - c)(a - c)( - 1) = (a - b)(b - c)(c - a)$$