Solveeit Logo

Question

Question: \[\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| =\]...

1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| =$$
A

a2+b2+c2a^{2} + b^{2} + c^{2}

B

(a+b)(b+c)(c+a)(a + b)(b + c)(c + a)

C

(ab)(bc)(ca)(a - b)(b - c)(c - a)

D

None of these

Answer

(ab)(bc)(ca)(a - b)(b - c)(c - a)

Explanation

Solution

1aa21bb21cc2=0aba2b20bcb2c21cc2,\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| = \left| \begin{matrix} 0 & a - b & a^{2} - b^{2} \\ 0 & b - c & b^{2} - c^{2} \\ 1 & c & c^{2} \end{matrix} \right|, by R1R1R2R_{1} \rightarrow R_{1} - R_{2} $$R_{2} \rightarrow R_{2} - R_{3}

= (ab)(bc)01a+b01b+c1cc2(a - b)(b - c)\left| \begin{matrix} 0 & 1 & a + b \\ 0 & 1 & b + c \\ 1 & c & c^{2} \end{matrix} \right|

= (ab)(bc)00ac01b+c1cc2(a - b)(b - c)\left| \begin{matrix} 0 & 0 & a - c \\ 0 & 1 & b + c \\ 1 & c & c^{2} \end{matrix} \right|, by R1R1R2R_{1} \rightarrow R_{1} - R_{2}

= (ab)(bc)(ac)00101b+c1cc2(a - b)(b - c)(a - c)\left| \begin{matrix} 0 & 0 & 1 \\ 0 & 1 & b + c \\ 1 & c & c^{2} \end{matrix} \right|

= (ab)(bc)(ac).(1)=(ab)(bc)(ca)(a - b)(b - c)(a - c).( - 1) = (a - b)(b - c)(c - a).