Question
Question: \[\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| =\]...
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{matrix} \right| =$$
A
a2+b2+c2
B
(a+b)(b+c)(c+a)
C
(a−b)(b−c)(c−a)
D
None of these
Answer
(a−b)(b−c)(c−a)
Explanation
Solution
111abca2b2c2=001a−bb−cca2−b2b2−c2c2, by R1→R1−R2 $$R_{2} \rightarrow R_{2} - R_{3}
= (a−b)(b−c)00111ca+bb+cc2
= (a−b)(b−c)00101ca−cb+cc2, by R1→R1−R2
= (a−b)(b−c)(a−c)00101c1b+cc2
= (a−b)(b−c)(a−c).(−1)=(a−b)(b−c)(c−a).